
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +1 51

E-mail addr
Journal of Sound and Vibration 303 (2007) 109–134

www.elsevier.com/locate/jsvi
Moment Lyapunov exponents of a two-dimensional system
under combined harmonic and real noise excitations

Wei-Chau Xie�

Department of Civil and Environmental Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

Received 8 July 2005; received in revised form 25 October 2006; accepted 21 December 2006

Available online 19 March 2007
Abstract

The moment Lyapunov exponents and the Lyapunov exponents of a two-dimensional system under combined

excitations of harmonic and real noise, which is modelled as an Ornstein–Uhlenbeck process, are studied. The moment

Lyapunov exponents and the Lyapunov exponents are important characteristics determining the moment and almost-sure

stability of a stochastic dynamical system. The eigenvalue problem governing the moment Lyapunov exponent is

established. A regular perturbation method is applied to solve the eigenvalue problem to obtain second-order, weak noise

expansions of the moment Lyapunov exponents. The influence of the real noise excitation on the parametric resonance due

to the harmonic excitation is investigated.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation of the dynamic stability of elastic systems, such as slender columns and thin plates under
axial loading, or buildings, bridges, and aircraft structures under wind loading, frequently leads to the study of
the dynamical behaviour of the solutions of a parametrized family of differential equations of the form

_x ¼ fðx; gÞ; x ¼ ðx1;x2; . . . ;xnÞ
T
2 Rn; fð0; gÞ ¼ 0, (1)

where g is a scalar parameter characterizing the load condition.
In many practical situations, the loading may be subjected to fluctuations of a stochastic nature, such as

those arising from earthquakes, wind, and ocean waves. White noise has been widely used in engineering
applications for the modelling of noise processes because of its simplicity and the availability of rigorous
mathematical theory. However, white-noise does not exist as a physically realizable process and the
singular behaviour it exhibits does not arise in any realizable context. On the other hand, the
Ornstein–Uhlenbeck process is a simple, Gaussian, explicitly representable stationary process, and is often
used to model a realizable noise process. The Ornstein–Uhlenbeck process is given by
dxðtÞ ¼ �axðtÞdtþ sdW ðtÞ, where W ðtÞ is a standard Wiener process. Letting s ¼

ffiffiffiffiffiffiffi
2D
p

a, the correlation
function and spectral density of the Ornstein–Uhlenbeck process xðtÞ are RðtÞ ¼ Dae�ajtj and
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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SðoÞ ¼ D½1þ ðo=aÞ2��1, in which the parameter a characterizes the bandwidth of the noise and D is related to
the spectral density of the noise. When a ¼ s!1, the Ornstein–Uhlenbeck process xðtÞ approachesffiffiffiffiffiffiffi
2D
p

_W ðtÞ, where _W ðtÞ denotes formally a unit Gaussian white-noise process. Hence, if one sets D ¼ 1
2
,

a ¼ s!1, the Ornstein–Uhlenbeck process xðtÞ approaches the unit Gaussian white-noise process _W ðtÞ.
There are engineering situations where the loading on the system contains both periodic components and

stochastic fluctuations. An example of such a system is the uncoupled flapping motion of rotor blades in
forward flight under the effect of atmospheric turbulence.

The sample or almost-sure stability of the trivial solution of system, described by Eq. (1) is determined by
the Lyapunov exponent of its linearized system

_x ¼ Dxfðx; gÞjx¼0x. (2)

The Lyapunov exponents, which are deterministic numbers, characterize the average exponential rates of
growth of the solutions of the system when the time parameter t is large, and is defined by

l ¼ lim
t!1

1

t
log kxðtÞk, (3)

where k � k denotes the Euclidean vector norm. In Eq. (3), kxðtÞk is a stochastic process and the limit exists
almost-surely or with probability one (w.p.1). In other words, the almost-sure convergence guarantees that the
limit given by Eq. (3) exists except for a set of solutions xðtÞ with probability zero. Depending on the initial
conditions xð0Þ, there are n Lyapunov exponents for the system described by Eq. (2). The trivial solution of the
dynamical system is stable with probability one if the top Lyapunov exponent is negative, whereas it is
unstable with probability one if the top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment, E½kxðtÞkp�, of the trivial solution of the dynamical
system is determined by the pth moment Lyapunov exponent, a deterministic number, defined by

LðpÞ ¼ lim
t!1

1

t
log E½kxðtÞkp�, (4)

where E½�� denotes expected value. Eq. (4) defines the Lyapunov exponent of the pth moment E½kxðtÞkp�, which
is a deterministic function of t, rather than a stochastic process; the convergence of the limit is thus understood
in the ordinary sense for deterministic functions. If Lð pÞo0, then E½kxðtÞkp� ! 0 as t!1. The pth moment
Lyapunov exponent LðpÞ is a convex analytic function in p with Lð0Þ ¼ 0 and L0ð0Þ is equal to the top
Lyapunov exponent l. The non-trivial zero d of LðpÞ, i.e. LðdÞ ¼ 0, is called the stability index.

To have a complete picture of the dynamic stability of a dynamical system, it is important to study both the
sample and moment stability and to determine both the top Lyapunov exponent and the pth moment
Lyapunov exponent. A systematic presentation of the theory of random dynamical systems and a
comprehensive list of references can be found in Arnold [1].

Although the moment Lyapunov exponents are important in the study of dynamic stability of
stochastic systems and it is relatively straightforward to set up the partial differential eigenvalue problems
governing the moment Lyapunov exponents (see, e.g. Refs. [2,3]), the actual evaluations of the moment
Lyapunov exponents are very difficult. In the last decade, researchers have attempted to devise various
approaches to obtain approximate results of the moment Lyapunov exponents. However, only a few results
have been published so far. Using the analytic property of the moment Lyapunov exponents, Arnold et al. [4]
obtained weak noise expansions of the moment Lyapunov exponents of a two-dimensional system in terms of
�p, where � is a small parameter, under both white-noise and real noise excitations. Khasminskii and
Moshchuk [5] obtained an asymptotic expansion of the moment Lyapunov exponent of a two-dimensional
system under white-noise parametric excitation in terms of the small fluctuation parameter �, from which the
stability index was obtained. Sri Namachchivaya and Vedula [6] obtained a general asymptotic approximation
for the moment Lyapunov exponent and the Lyapunov exponent for a four-dimensional system with one
critical mode and another asymptotically stable mode driven by a small intensity stochastic process.
Sri Namachchivaya and Van Roessel [7] studied the moment Lyapunov exponents of two coupled
oscillators driven by real noise. Xie obtained weak noise expansions of the moment Lyapunov exponent,
the Lyapunov exponent, and the stability index, in terms of the small fluctuation parameter, of a
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two-dimensional system exhibiting pitch-fork bifurcation under real noise excitation [8] and under bounded
noise excitation [9].

The almost-sure stability of dynamical systems under combined harmonic and stochastic excita-
tions was first studied by Sri Namachchivaya [10] by evaluating the largest Lyapunov exponents.
Weak noise expansions of the moment Lyapunov exponents and Lyapunov exponents of two-
dimensional systems under both harmonic and white-noise excitations were studied by Baxendale [11] and
Xie [12].

In this paper, a two-dimensional system under combined parametric excitations of harmonic and real noise,
which is a more realistic model of noises in engineering applications, is studied. Weak noise expansions of the
moment Lyapunov exponents and Lyapunov exponents are obtained. The effect of the real noise excitation on
the parametric resonance due to the harmonic excitation is investigated. Because of the extra harmonic
excitation in the stochastic equation of motion, the eigenvalue problem governing the moment Lyapunov
exponent is a second-order partial differential equation with three independent variables. The perturbation
approach used in solving the eigenvalue problem is more complex and significantly different from that applied
in Ref. [8], in which the moment Lyapunov exponent is governed by a second-order partial differential
eigenvalue problem with only two independent variables.

2. Formulation

2.1. Equations of motion

Consider a two-dimensional system under combined harmonic and real noise excitations as follows:

q00ðtÞ þ 2�bq0ðtÞ þ ½O2
0 þ �m0 sin n̂0tþ �

rg0xðtÞ�qðtÞ ¼ 0, (5)

where �40 is a small parameter, r is a proper scaling parameter to be determined so that the contributions of
the harmonic and real noise excitations are comparable, and xðtÞ is a real noise process in time t, modelled as
an Ornstein–Uhlenbeck process, given by

dxðtÞ ¼ �a0xðtÞdtþ s0 dW ðtÞ, (6)

in which W ðtÞ is a standard Wiener process in time t.
The damping term in Eq. (5) can be removed by applying the transformation qðtÞ ¼ xðtÞe��bt to yield

x00ðtÞ þ ½O2 þ �m0 sin n̂0tþ �
rg0xðtÞ�xðtÞ ¼ 0, (7)

where O2 ¼ O2
0 � �

2b2. Eq. (6) can be further simplified by applying the time scaling t ¼ Ot. The time scaling
reduces Eqs. (7) and (6) to

€xðtÞ þ ½1þ �m sin ntþ �rgzðtÞ�xðtÞ ¼ 0, (8)

dzðtÞ ¼ �azðtÞdtþ sdW ðtÞ, (9)

where

m ¼
m0
O
; n ¼

n̂0
O
; g ¼

g0
O2
; a ¼

a0
O
; s ¼

s0ffiffiffiffi
O
p ,

and W ðtÞ is the standard Wiener process in time t.
In the absence of the real noise excitation, i.e. when g ¼ 0, Eq. (8) reduces to the Mathieu’s equation

€xðtÞ þ ð1þ �m sin ntÞxðtÞ ¼ 0.

The nth-order parametric resonance occurs when the frequency of the sinusoidal excitation n is in the vicinities
of 2=n, n ¼ 1; 2; . . . : When n � 2, the primary resonance occurs. The first-order approximation of the
instability region can be obtained using the method of averaging or the method of multiple scales and is given
by (see, e.g. Ref. [13])

2� 1
2
ð�mÞpnp2þ 1

2
ð�mÞ.
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For a given value of m, the width of the primary instability region is �m, i.e. of the order �. In the
instability region, the trivial solution ðx; _xÞ ¼ ð0; 0Þ becomes unstable and grows exponentially.
When n � 1, the secondary resonance occurs and the first-order approximation of the instability region is
given by

1� 5
24
ð�mÞ2pnp1þ 1

24
ð�mÞ2.

For a given value of m, the width of the secondary instability region is 1
4ð�mÞ

2, which is of the order �2.
On the other hand, when the amplitude of the sinusoidal excitation m is zero, Eq. (8) is a single degree-of-

freedom system under real noise parametric excitation

€xðtÞ þ ½1þ �rgzðtÞ�xðtÞ ¼ 0.

From the method of stochastic averaging [13–15], it is well known that for the noise to have a contribution of
the order of �, the noise should be of the order �1=2, i.e. r ¼ 1=2.

When studying the effect of noise on the parametric resonance of Mathieu’s equation, it is important to
properly scale the noise so that the effects of the noise and the sinusoidal excitations are comparable. If the
noise is too weak, it has no effect on the parametric resonance in the first-order approximation. On the other
hand, if the noise is too strong, it overpowers the sinusoidal excitation and the effect of parametric resonance
is of a higher order.

For the primary resonance, the effect of the sinusoidal excitation is of the order �. Hence, the order of the
real noise is taken as �1=2, i.e. r ¼ 1=2. For the secondary resonance, the effect of the sinusoidal excitation is of
the order �2, which leads to that the order of the real noise must be �, i.e. r ¼ 1, to have a comparable
contribution.

2.2. Establishing the eigenvalue problem governing the moment Lyapunov exponents

The moment and almost-sure stability of the system described by Eq. (8) are determined by the moment
Lyapunov exponent and the top Lyapunov exponent, respectively. The Lyapunov exponents and the moment
Lyapunov exponents of the systems described in Eqs. (5), (7), and (8) are related by the following
relationships:

lqðtÞ ¼ ��bþ lxðtÞ ¼ ��bþ OlxðtÞ,

LqðtÞðpÞ ¼ ��pbþ LxðtÞðpÞ ¼ ��pbþ OLxðtÞðpÞ.

The moment Lyapunov exponent of system of Eq. (8) is the eigenvalue of a eigenvalue problem. In this
section, two approaches are presented to establish the partial differential eigenvalue problem governing the
pth moment Lyapunov exponent.

The first approach uses the theory of stochastic dynamical system [2]. Denoting y ¼ nt, y may be considered
as a random process with generator Gy ¼ nq=qy. The real noise zðtÞ defined by Eq. (9) has the generator

Gz ¼
s2

2

q2

qz2
� az

q
qz

.

Letting x1 ¼ x, x2 ¼ _x, Eq. (8) may be written in the form of state equations

dx ¼ B0xdtþ B1xdW , (10)

where

x ¼
x1

x2

( )
; B0 ¼

0 1

�ð1þ �m sin yþ �rgzÞ 0

" #
; B1 ¼

0 0

0 0

� �
.

Applying the Khasminskii transformation [16]:

s1 ¼
x1

kxk
¼ cosj; s2 ¼

x2

kxk
¼ sinj; s ¼

s1

s2

( )
¼

cosj

sinj

( )
; ŝ ¼

sinj

� cosj

( )
, (11)
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where kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q
is the Euclidean norm of vector x, the random process x is projected

onto the unit sphere s. The moment Lyapunov exponent LxðtÞðpÞ of the system described by
Eqs. (8), or Eq. (10) in the form of state equations, is the principal eigenvalue of the eigenvalue
problem [2]

LðpÞTðz;j; yÞ ¼ LxðtÞðpÞTðz;j; yÞ, (12)

where LðpÞ ¼ Gz þ Gy þ Lþ pX þ pQþ 1
2
p2R.

To evaluate L, X, Q, and R, it is necessary to determine bi, hi, and qi, for i ¼ 0 and 1, which are given by

bi ¼ ŝTBis; b0 ¼ 1þ ð�m sin yþ �rgzÞcos2j; b1 ¼ 0,

hi ¼ �bi

q
qj

; h0 ¼ �½1þ ð�m sin yþ �rgzÞcos2j�
q
qj

; h1 ¼ 0,

qi ¼ sTBis; q0 ¼ �ð�m sin yþ �
rgzÞ cosj sinj; q1 ¼ 0.

Hence,

L ¼ h0 þ
1
2
h2
1 ¼ �½1þ ð�m sin yþ �

rgzÞcos2j�
q
qj

,

X ¼ q1h1 ¼ 0,

Q ¼ q0 � q2
1 þ

1
2
sTðB1 þ BT

1 ÞB1s ¼ �ð�m sin yþ �rgzÞ cosj sinj,

R ¼ q2
1 ¼ 0.

Therefore, the infinitesimal differential operator LðpÞ is given by

LðpÞ ¼
1

2
s2

q2

qz2
� az

q
qz
þ n

q
qy
� ½1þ ð�m sin yþ �rgzÞcos2j�

q
qj
� pð�m sin yþ �rgzÞ cosj sinj. (13)

The eigenvalue problem (Eq. (12)) with the infinitesimal differential operator given by Eq. (13) can also be
derived by using a more intuitive approach. This second approach was originally employed by Wedig [3] to
derive the eigenvalue problem for the moment Lyapunov exponent of a two-dimensional linear Itô stochastic
system.

Rewrite Eqs. (8) and (9) as a four-dimensional system as

d

x1

x2

z

y

8>>><
>>>:

9>>>=
>>>;
¼

x2

�ð1þ �m sin yþ �rgzÞx1

�az

n

8>>><
>>>:

9>>>=
>>>;

dtþ

0

0

s

0

8>>><
>>>:

9>>>=
>>>;

dW . (14)

Employing the Khasminskii transformation shown in Eq. (11) and defining the pth norm P ¼ kxkp,
the Itô differential equations for the pth norm P and the angle j can be obtained by using Itô’s
Lemma:

d

P

j

z

y

8>>><
>>>:

9>>>=
>>>;
¼

�pPð�m sin yþ �rgzÞ cosj sinj

�½1þ ð�m sin yþ �rgzÞ cos2j�

�az

n

8>>><
>>>:

9>>>=
>>>;

dtþ

0

0

s

0

8>>><
>>>:

9>>>=
>>>;

dW . (15)

Applying a linear transformation

S ¼ Tðz;j; yÞP; P ¼ T�1ðz;j; yÞS; 0pjop; 0pyo2p,
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the Itô differential equation for the transformed pth norm process S can also be obtained by using Itô’s
Lemma:

dS ¼ f1
2
s2Tzz � azTz þ nTy � ½1þ ð�m sin yþ �rgzÞ cos2j�Tj

� pð�m sin yþ �rgzÞ cosj sinjTgPdtþ sT zPdW . ð16Þ

For a bounded and non-singular transformation Tðz;j; yÞ, both processes P and S are expected to have the
same stability behaviour. Therefore, Tðz;j; yÞ is chosen so that the drift term of the Itô differential given in
Eq. (16) is independent of the processes z, j, and y, i.e.,

dS ¼ LS dtþ sTzT
�1S dW . (17)

Comparing the drift terms in Eqs. (16) and (17), it is seen that such a transformation Tðz;j; yÞ is the
eigenfunction of the eigenvalue problem

1
2
s2Tzz � azTz þ nTy � ½1þ ð�m sin yþ �rgzÞ cos2j�Tj

� pð�m sin yþ �rgzÞ cosj sinjT ¼ LT ð18Þ

with L being the eigenvalue.
From Eq. (17), it is clear that L is the Lyapunov exponent of the transformed pth norm process S; hence L is

the moment Lyapunov exponent of system (14) or (8), i.e. L ¼ LxðtÞðpÞ. By comparing Eqs. (12) and (13) with
Eq. (18), it is seen that the eigenvalue problem governing the moment Lyapunov exponent L ¼ LxðtÞðpÞ,
derived by using the general theory of moment Lyapunov exponent [2], is the same as that derived by using a
more intuitive approach originally employed by Wedig [3].
3. Moment Lyapunov exponents

As mentioned earlier, in the absence of the real noise excitation, the system described by Eq. (8) is in
parametric resonance when n is in the vicinity of 2; 1; 2

3
; . . . . In this paper, the effect of real noise on the

primary and the secondary parametric resonance is studied through the determination of the moment
Lyapunov exponent. Let the harmonic excitation frequency n ¼ n0 þ �nD; n ¼ 1; 2, where n0 ¼ 2=n is the
harmonic excitation frequency corresponding to a parametric resonance of order n in the absence of the real
noise excitation, and D is the mistune parameter.

In this section, the stochastic stability of the system described by Eq. (8) is studied through the
determination of the moment Lyapunov exponent LxðtÞðpÞ by solving the eigenvalue problem (Eqs. (12) or
(18)). A method of regular perturbation (see, e.g. Ref. [17]) is applied to obtain weak noise expansions of the
moment Lyapunov exponent LxðtÞðpÞ and the Lyapunov exponent lxðtÞ.

3.1. Primary parametric resonance, n ¼ 1, r ¼ 1
2
, and n0¼2

3.1.1. Method of regular perturbation

In the absence of the real noise excitation, the system described in Eq. (8) is in primary parametric resonance
when n ¼ n0 þ �D, n0 ¼ 2. Applying the transformation y ¼ c� 2j, the infinitesimal differential operator in
Eq. (12) becomes

LðpÞ ¼ L0 þ �
1=2L1 þ �L2, (19)

where

L0 ¼
s2

2

q2

qz2
� az

q
qz
�

q
qj

,

L1 ¼ �gz cos2j 2
q
qc
þ

q
qj

� �
þ p cosj sinj

� �
,
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L2 ¼ D
q
qc
� m sinðc� 2jÞ cos2j 2

q
qc
þ

q
qj

� �
þ p cosj sinj

� �
.

Expand the moment Lyapunov exponent LxðtÞðpÞ and the eigenfunction Tðz;j;cÞ:

LxðtÞðpÞ ¼
X1
i¼0

�i=2LiðpÞ; Tðz;j;cÞ ¼
X1
i¼0

�i=2Tiðz;j;cÞ, (20)

where Tiðz;j;cÞ are periodic functions in j of period p and in c of period 2p. Substituting Eq. (20)
into Eq. (19), expanding, and equating terms of equal power of �, results in the perturbation
equations,

Zeroth-order: L0T0 ¼ L0T0;

First-order: L0T1 þ L1T0 ¼ L1T0 þ L0T1;

Second-order: L0T2 þ L1T1 þ L2T0 ¼ L2T0 þ L1T1 þ L0T2;

Third-order: L0T3 þ L1T2 þ L2T1 ¼ L3T0 þ L2T1 þ L1T2 þ L0T3;

..

. ..
.

(21)

By solving the zeroth-order, first-order, and second-order perturbation equations in Eq. (21), it is shown in
Appendix A that L0ðpÞ ¼ L1ðpÞ ¼ 0 and L2ðpÞ is given by the eigenvalue of the second-order ordinary
differential eigenvalue problem (Eq. (A.11)), i.e.

a €C0ðcÞ þ ðbþ 2q sincÞ _C0ðcÞ þ ½L2 þ cpðpþ 2Þ � pq cosc�C0ðcÞ ¼ 0, (22)

where the coefficients a, b, c, and q are given in Appendix A.

3.1.2. Determination of L2

The second-order perturbation of the moment Lyapunov exponent L2 can be obtained by solving the
eigenvalue problem given in Eq. (22). Since the coefficients of Eq. (22) are periodic functions of period 2p, a
series expansion of the eigenfunction C0ðcÞ may be taken:

C0ðcÞ ¼ C0 þ
XN

k¼1

ðCk cos kcþ Sk sin kcÞ, (23)

where C0;Ck;Sk, k ¼ 1; 2; . . . ;N, are constants to be determined. Substituting Eq. (23) into
Eq. (22), multiplying the resulting equation by cosmc, sinmc, m ¼ 0; 1; . . . ;N, respectively, and
integrating with respect to c from 0 to 2p results in a set of 2N þ 1 homogeneous linear equations for the
unknown coefficients C0, Ck, Sk, k ¼ 1; 2; . . . ;N. In order to have a non-trivial
solution, the determinant of the coefficient matrix of these 2N þ 1 linear algebraic equations DðNÞ

must be zero. The determinantal equation DðNÞ leads to a polynomial equation of degree 2N þ 1 in L2 of
the form

L2Nþ1
2 þ d2NL2N

2 þ � � � þ d1L2 þ d0 ¼ 0. (24)

An approximate result of L2 can be obtained by solving Eq. (24). Note that the exact result of L2 is obtained
when the number of terms N !1.

When N ¼ 1, Eq. (24) is a cubic equation, the coefficients of which are

d0 ¼ c3p6 þ 6c3p5 � ð2ac2 � 12c3 þ 1
2
cq2Þp4 � ð8ac2 � 8c3 þ 2cq2Þp3

þ ð12aq2 � 8ac2 � 2cq2 þ b2cþ a2cÞp2 þ ð2b2cþ aq2 þ 2a2cÞp,

d1 ¼ 3c2p4 þ 12c2p3 � ð4ac� 12c2 þ 1
2
q2Þp2 � ð8acþ q2Þpþ a2 þ b2,

d2 ¼ 3cp2 þ 6cp� 2a.
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Fig. 1. Second-order perturbation of moment Lyapunov exponent LðNÞ2 , primary resonance, D ¼ 1:0, g ¼ 1:0, a ¼ 1:0. Lines, N ¼ 1,

analytical results; dots ð� or �Þ, N ¼ 8, numerical results: (a) m ¼ 1:0; —, s ¼ 2:0; - - - , s ¼ 4:0; �2 �2�, s ¼ 6:0; -——-, s ¼ 8:0; and
- -——- -, s ¼ 10:0; (b) s ¼ 1:0; —, m ¼ 1:0; - - -, m ¼ 1:5; �2 �2�, m ¼ 2:0; and -——-, m ¼ 2:5.
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The solution of Eq. (24) with N ¼ 1 is given by

Lð1Þ2 ¼
1

6
ðA2 � 2d2Þ �

2

3

3d1 � d2
2

A2
, (25)

where

A2 ¼ ð�108d0 þ 36d1d2 � 8d3
2 þ 12A1Þ

1=3,

A1 ¼ ð81d2
0 � 54d0d1d2 þ 12d3

1 þ 12d0d3
2 � 3d2

1d
2
2Þ

1=2.
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Fig. 2. Second-order perturbation of moment Lyapunov exponent Lð8Þ2 , primary resonance, m ¼ 1:0, g ¼ 1:0 and a ¼ 1:0. (a) s ¼ 0:5;
(b) s ¼ 1:0; and (c) s ¼ 1:5.
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Fig. 3. Second-order perturbation of moment Lyapunov exponent Lð8Þ2 , primary resonance, m ¼ 1:0, g ¼ 2:0 and a ¼ 1:0. (a) s ¼ 0:5 and

(b) s ¼ 1:0.
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When N41, there is no analytical solution available for Eq. (24) and numerical approach has to be
employed to find an approximate root LðNÞ2 . In Fig. 1, the analytical result Lð1Þ2 is plotted along with the
numerical result Lð8Þ2 . It is seen that, for a given value of m ¼ 1, the two results agree extremely well for all
values of s. On the other hand, for a given value of s ¼ 1, Lð1Þ2 and Lð8Þ2 agree very well for smaller values of m
up to 2. When the value of m increases, discrepancies exist between Lð1Þ2 and Lð8Þ2 . Three-dimensional surface
plots of Lð8Þ2 are shown in Fig. 2 for m ¼ 1:0, g ¼ 1:0, a ¼ 1:0, and s ¼ 0:5, 1.0, and 1.5. As mentioned earlier,
the system described by Eq. (8) is in primary parametric resonance in the absence of the real noise excitation.
To study the influence of the real noise excitation and the harmonic excitation on the parametric resonance
and the moment Lyapunov exponent, Lð8Þ2 are shown in Fig. 3 for m ¼ 1:0, g ¼ 2:0, a ¼ 1:0, and s ¼ 0:5 and
1.0, and in Fig. 4 for m ¼ 2:0,g ¼ 1:0, a ¼ 1:0, and s ¼ 0:5 and 1.0.
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Fig. 4. Second-order perturbation of moment Lyapunov exponent Lð8Þ2 , primary resonance, m ¼ 2:0, g ¼ 1:0 and a ¼ 1:0. (a) s ¼ 0:5 and

(b) s ¼ 1:0.
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It is noted that the use of truncated Fourier series given in Eq. (23) with relatively small values of N results
in accurate approximations of the moment Lyapunov exponents for the system of Eq. (8). However, no
general statement can be made beyond the system considered in this paper. When an approximate value LðNÞ2 is
obtained from Eq. (24), an approximation of the moment Lyapunov exponent is given by
LxðtÞðpÞ � �L

ðNÞ
2 þ oð�Þ.

It is seen that for small values of the noise intensity s, small values of the amplitude of the real noise
excitation g, or large values of the amplitude of the harmonic excitation m, the influence of the real noise
excitation is small and the harmonic excitation is dominant; hence the effect of the primary parametric
resonance is significant. On the other hand, when the noise intensity s is increased, the amplitude of the real
noise excitation g is large, or the amplitude of the harmonic excitation m is small, the impact of the real noise
excitation intensifies and the prominence of the primary parametric resonance is decreased.

Furthermore, note that when D!�1, the effect of parametric resonance diminishes and the influence of
the harmonic excitation vanishes. Obviously, when m! 0, the influence of the harmonic excitation diminishes.
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By taking limits of Eq. (25) as D!�1 or m! 0, it can be easily shown that

lim
D!�1

Lð1Þ2 ¼ lim
m!0

Lð1Þ2 ¼
pðpþ 2Þg2s2

16ða2 þ 4Þ
, (26)

which is the same as the second-order perturbation of the moment Lyapunov exponent of a two-dimensional
system under real noise excitation (Eq. (39) in Ref. [8]).

As mentioned earlier, taking s ¼ a!1, the real noise, modelled by an Ornstein–Uhlenbeck process,
approaches a unit Gaussian white-noise process. By setting m ¼ 0, the system of Eq. (8) becomes a two-
dimensional system under white-noise excitation

dx1 ¼ x2 dt,

dx2 ¼ �x1 dt� �1=2gx1 dW ðtÞ. ð27Þ

From Eq. (26), one obtains the moment Lyapunov exponent of the system described by Eq. (27)

lim
m!0

s¼a!1

LxðtÞðpÞ � � lim
m!0

s¼a!1

LðNÞ2 þ oð�Þ ¼ �
pðpþ 2Þg2

16
þ oð�Þ,

which can be easily shown to be the same as the second-order approximation of the moment Lyapunov
exponent of system, described by Eq. (27), obtained by Khasminskii and Moshchuk (Eq. (48) in Ref. [5]).

3.1.3. Determination of l2
It is well known that the Lyapunov exponent is related to the moment Lyapunov exponent by

lxðtÞ ¼ lim
p!0

LxðtÞðpÞ

p
� �lðNÞ2 þ oð�Þ; lðNÞ2 ¼ lim

p!0

LðNÞ2 ðpÞ

p
. (28)

From Eq. (28) it can be inferred that LðNÞ2 ¼ OðpÞ when p! 0, and hence ½LðNÞ2 �
k ¼ oðpÞ for k41. From Eq.

(24), the second-order perturbation of the Lyapunov exponent is given by

lðNÞ2 ¼ lim
p!0

d0

d1
. (29)

Since the determination of lðNÞ2 does not require the solution of the polynomial in Eq. (24), a larger value of N

can be taken. When N ¼ 8, lð8Þ2 is given by lð8Þ2 ¼ �N ð8Þ=Dð8Þ, where N ð8Þ and Dð8Þ are given in Appendix B. The

expressions of lðNÞ2 for larger values of N are also obtained but are not presented here due to the limitation in

the length of the paper.
When D!�1, the effect of the harmonic excitation diminishes and the influence of the real noise

excitation dominates. By taking the indicated limits, it can be shown that, for all values of N,

lim
D!�1

lðNÞ2 ¼ lim
m!0

lðNÞ2 ¼
g2s2

8ða2 þ 4Þ
, (30)

which is the same as the second-order perturbation of the Lyapunov exponent of a two-dimensional system
under real noise excitation (Eq. (52) in Xie [8]).

From Eq. (30), the Lyapunov exponent for the system described by (27) is

lim
m!0

s¼a!1

lxðtÞ ¼ �l
ðNÞ
2 þ oð�Þ ¼ �

g2

8
þ oð�Þ,

which is the same as that obtained in Refs. [18,19].
Typical plots of lðNÞ2 are shown in Fig. 5 for s ¼ 1:0 and 2.0. The influence of the real noise excitation on the

parametric resonance can be clearly seen. When s increases, the influence of the harmonic excitation decreases
and the effect of parametric resonance diminishes, resulting in the domination of the real noise excitation. To
study the accuracy of lðNÞ2 for different values of N, typical results of lðNÞ2 are plotted in Fig. 6 for N ¼ 4, 8, and
12. It is seen that lð8Þ2 and lð12Þ2 agree extremely well for all values of m; whereas lð4Þ2 agrees with lð8Þ2 and lð12Þ2

very well for smaller values of m up to 6, but some discrepancies exist for larger values of m.



ARTICLE IN PRESS

Fig. 5. Second-order perturbation of Lyapunov exponent lð14Þ2 , primary resonance, g ¼ 1:0 and a ¼ 1:0. (a) s ¼ 1:0 and (b) s ¼ 2:0.
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In order to check the validity of the perturbation results, a digital simulation is performed. Eqs. (8) and (9)
are discretized by using the Euler scheme and the resulting equations are:

x1ðtþ DtÞ ¼ x1ðtÞ þ x2ðtÞ � Dt,

x2ðtþ DtÞ ¼ x2ðtÞ � ½1þ �m sin ntþ �1=2gzðtÞ�x1ðtÞ � Dt,

zðtþ DtÞ ¼ ð1� a � DtÞzðtÞ þ s � DW ðtÞ, ð31Þ

where DW ðtÞ ¼ nt

ffiffiffiffiffi
Dt
p

, in which nt is a standard normally distributed random number. Note that the Euler
(31) is the same as the Milstein scheme. The numerical algorithm proposed by Wolf, Swift, Swinney and
Vastano [20] for evaluating the Lyapunov exponents of a time series is applied to determine lxðtÞ. Numerical
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results of lxðtÞ from simulation are plotted in Fig. 7 along with the perturbation results lxðtÞ � �l
ð14Þ
2 for various

values of m. It is observed that both results agree very well.
3.2. Secondary parametric resonance, n ¼ 2, r ¼ 1, and n0 ¼ 1

In the absence of the real noise excitation, the system described in Eq. (8) is in secondary parametric
resonance when n ¼ n0 þ �2D, n0 ¼ 1. By applying the transformation y ¼ c� j, the infinitesimal differential
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operator in Eq. (12) becomes

LðpÞ ¼ L0 þ �L1 þ �
2L2, (32)

where

L0 ¼
s2

2

q2

qz2
� az

q
qz
�

q
qj

,

L1 ¼ ½�gzþ m sinðj� cÞ� � cos2j
q
qc
þ

q
qj

� �
þ p cosj sinj

� �
,

L2 ¼ D
q
qc

.

Expand the moment Lyapunov exponent LxðtÞð pÞ and the eigenfunction Tðz;j;cÞ:

LxðtÞð pÞ ¼
X1
i¼0

�iLið pÞ; Tðz;j;cÞ ¼
X1
i¼0

�iT iðz;j;cÞ, (33)

where Tiðz;j;cÞ are periodic functions in j and c of period 2p, respectively. Substituting Eq. (33) into
Eq. (12) with the infinitesimal differential operator Lð pÞ given by Eq. (32), expanding, and equating terms of
equal power of � results in the perturbation equations of the form given in Eq. (21).

Solving the perturbation equations, it is shown in Appendix C that L0ðpÞ ¼ L1ðpÞ ¼ 0 and L2ðpÞ is the
eigenvalue of the eigenvalue problem of Eq. (C.4) with a second-order ordinary differential operator, i.e.

a €C0ðcÞ þ ðbþ q cos 2cÞ _C0ðcÞ þ ½L2 þ cpðpþ 2Þ þ pq sin 2c�C0ðcÞ ¼ 0, (34)

where the coefficients a, b, c, and q are given in Appendix C.

3.2.1. Determination of L2

The approach employed in Section 3.1.2 can be applied to determine L2 by solving Eq. (C.4) in Appendix.
Since the coefficients of system described by Eq. (C.4) are periodic functions of period p, a series expansion of
the eigenfunction C0ðcÞ can be taken as

C0ðcÞ ¼ C0 þ
XN

k¼1

ðC2k cos 2kcþ S2k sin 2kcÞ, (35)

where C0, C2k, S2k, k ¼ 1; 2; . . . ;N are coefficients to be determined. By substituting Eq. (35) into Eq. (C.4),
multiplying by cos 2mc, sin 2mc, m ¼ 0; 1; . . . ;N, respectively, and integrating with respect to c from 0 to p
leads to a system of 2N þ 1 homogeneous linear algebraic equations for the unknown coefficients C0, C2k, S2k,
k ¼ 1; 2; . . . ;N. The polynomial Eq. (24) is required in order to have non-trivial solutions for the unknown
coefficients.

When N ¼ 1, the coefficients of the cubic Eq. (24) are

d0 ¼ c3p6 þ 6c3p5 þ ð�8ac2 þ 12 c3 � 1
2

cq2Þp4 þ ð�32ac2 þ 8c3 � 2cq2Þp3

þ ð16a2c� 32ac2 þ 2aq2 þ 4b2c� 2cq2Þp2 þ ð32a2cþ 4aq2 þ 8b2cÞp,

d1 ¼ 3c2p4 þ 12c2p3 þ ð�16acþ 12c2 � 1
2

q2Þp2 þ ð�32ac� q2Þpþ 16a2 þ 4b2,

d2 ¼ 3cp2 þ 6cp� 8a.

The analytical expression for Lð1Þ2 is given by Eq. (25). In Fig. 8, the analytical results for Lð1Þ2 are plotted along

with the numerical results of Lð8Þ2 . Three-dimensional surface plots of Lð8Þ2 are shown in Fig. 9 for s ¼ 0:5, 1.0,
and 1.5 to illustrate the influence of the real noise excitation on the secondary parametric resonance.
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The second-order perturbation of the Lyapunov exponent l2 can be determined by using Eq. (28). When

N ¼ 8, lð8Þ2 ¼ �2N ð8Þ=Dð8Þ, where the expressions of N ð8Þ and Dð8Þ are given in Appendix D. Expressions of lðNÞ2

for larger values of N are also obtained but are not presented here. Three-dimensional surface plots of lð14Þ2 are

shown in Fig. 10 for s ¼ 1:0 and 3.0. The impact of the real noise excitation on the secondary parametric
resonance can be clearly seen. Similar conclusions on the qualitative behaviour of the moment Lyapunov
exponent as in the case of primary parametric resonance can be drawn. It is noted that when D!�1 or
m! 0, Eqs. (26) and (30) are obtained, because in both cases the harmonic excitation has no effect and system
of Eq. (8) is equivalent to a two-dimensional system under only real noise excitation when the stability is
concerned.
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Fig. 9. Second-order perturbation of moment Lyapunov exponent Lð8Þ2 , secondary resonance, m ¼ 1:0, g ¼ 1:0 and a ¼ 1:0. (a) s ¼ 0:5;
(b) s ¼ 1:0 and (c) s ¼ 1:5.
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Fig. 10. Second-order perturbation of Lyapunov exponent lð14Þ2 , secondary resonance, g ¼ 1:0 and a ¼ 1:0. (a) s ¼ 1:0 and (b) s ¼ 3:0.
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To study the accuracy of lðNÞ2 , typical values of lðNÞ2 are plotted in Fig. 11 for N ¼ 4, 8, and 12. It is seen that
lð4Þ2 yields accurate results for smaller values of m up to 5, while lð8Þ2 and lð12Þ2 both yield accurate results for all
values of m shown. The validity of the perturbation results is checked by doing a Monte Carlo simulation, with
the numerical results shown inFig. 12. It can be seen that the analytical results lxðtÞ ¼ �2l

ð14Þ
2 agree with lxðtÞ

obtained from simulation very well.
The Lyapunov exponent plots as seen in Figs. 5–7 are almost symmetric about D ¼ 0 in the primary

parametric resonance case, whereas they are skewed towards �D in the secondary parametric resonance case
as shown in Figs. 10–12.
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4. Conclusions

In this paper, the dynamic stability of a two-dimensional system under the parametric excitation of combined
harmonic and real noise excitations is studied through the determination of the moment Lyapunov exponents and
the Lyapunov exponents. The real noise, modelled as an Ornstein–Uhlenbeck process, is a more realistic model of
noise in engineering applications than white noise. The eigenvalue problem governing the moment Lyapunov
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exponent is established by using the theory of stochastic dynamical systems. A regular perturbation method is
employed to obtain expansions of the moment Lyapunov exponents. The Lyapunov exponents are determined by
using the relationship between the moment Lyapunov exponents and the Lyapunov exponents. The accuracy of
the expansions are studied and the validity of the expansions are checked by using Monte Carlo simulation.

The cases of both the primary and secondary parametric resonance in the absence of the real noise
excitation are considered. The effect of the real noise excitation on the parametric resonance due to the
harmonic excitation is studied. When the influence of the real noise excitation is small, the harmonic excitation
is dominant and the parametric resonance is significant. On the other hand, when the impact of the real noise
excitation is large, the effect of the harmonic excitation is small and the prominence of the parametric
resonance due to the harmonic excitation diminishes.

In the special case when the amplitude of the harmonic excitation m ¼ 0 or when the effect of the parametric
resonance diminishes with the mistune D!�1, the moment Lyapunov exponent and the Lyapunov
exponent reduce to those of a two-dimensional system under only the real noise excitation. Unfortunately,
because of the current formulation is based on a stochastic dynamical system approach, it is not possible to set
g ¼ 0 to reduce the result of the Lyapunov exponent to that of the Mathieu’s equation, i.e. a two-dimensional
system under harmonic excitation.
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Appendix A. Perturbation Analysis—Primary resonance

A.1. Zeroth-order perturbation

The zeroth-order perturbation equation of Eq. (21) is L0T0 ¼ L0T0, or

s2

2

q2T0

qz2
� az

qT0

qz
�

qT0

qj
¼ L0T0. (A.1)

It is well known that one of the properties of the moment Lyapunov exponent is LxðtÞð0Þ ¼ 0, which implies
Lið0Þ ¼ 0, i ¼ 0, 1, . . . . Because Eq. (A.1) does not contain the parameter p explicitly, if L0ð0Þ ¼ 0 then
L0ðpÞ ¼ 0 for all values of p.

Seeking a solution of Eq. (A.1) in the form T0ðz;j;cÞ ¼ Z0ðzÞF0ðjÞC0ðcÞ and substituting into Eq. (A.1)
leads to

s2

2

€Z0

Z0
� az

_Z0

Z0
¼
_F0

F0
¼ k.

The F0 equation results in F0ðjÞ ¼ C1e
kj. For F0ðjÞ to be a periodic function in j, it is required that k ¼ 0,

yielding F0ðjÞ ¼ C1. From the Z0 equation, Z0ðzÞ ¼ C2 þ C3erfði
ffiffiffi
a
p

z=sÞ, where erfð�Þ denotes the error
function. For Z0ðzÞ to be a bounded function when z!�1, it is required that C3 ¼ 0 and hence Z0ðzÞ ¼ C2.
Therefore, T0ðz;j;cÞ ¼ C0ðcÞ, where C0ðcÞ is a periodic function of period 2p.

The adjoint equation of Eq. (A.1) is

s2

2

q2T	0
qz2
þ az

qT	0
qz
þ

qT	0
qj
þ aT	0 ¼ 0. (A.2)

Similarly, seeking a solution of the form T	0ðz;j;cÞ ¼ Z	0ðzÞF
	
0ðjÞC

	
0ðcÞ and substituting into Eq. (A.2) leads

to

s2

2

€Z
	

0

Z	0
þ az

_Z
	

0

Z	0
þ a ¼ �

_F
	

0

F	0
¼ k,
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and C	0ðcÞ can be taken as an arbitrary periodic function of period 2p. The F	0 equation yields
F	0ðjÞ ¼ constant, k ¼ 0. Since the coefficients of Eq. (19) are periodic functions in j of period p, F	0ðjÞ
may be taken as

F	0ðjÞ ¼ 1=p; 0pjop, (A.3)

which is the probability density function of a random number uniformly distributed in ð0;pÞ.
The Z	0 equation becomes

s2

2
€Z
	

0 þ az _Z
	

0 þ aZ	0 ¼ 0, (A.4)

which is the Fokker–Planck equation for the stationary transition probability density of the Ornstein–
Uhlenbeck process zðtÞ as defined in Eq. (9) [21]. Eq. (A.4) may be written as

d

dz
dZ	0
dz
þ

2a
s
zZ	0

� �
¼ 0,

or

dZ	0
dz
þ

2a
s
zZ	0 ¼ probability current. (A.5)

Since both the probability density Z	0ðzÞ and the probability current vanish when z!�1, Eq. (A.5) can be
solved to yield

Z	0ðzÞ ¼
1ffiffiffiffiffiffi
2p
p

sz
exp �

z2

2s2z

 !
, (A.6)

where sz ¼ s=
ffiffiffiffiffi
2a
p

and Z	0ðzÞ has been normalized using
Rþ1
�1

Z	0ðzÞdz ¼ 1. Eq. (A.6) indicates that the real
noise process zðtÞ, defined as an Ornstein–Uhlenbeck process, is a normally distributed random variable with
mean value mz ¼ 0 and standard deviation sz.

A.2. First-order perturbation

The first-order perturbation equation becomes, because L0ðpÞ ¼ 0,

L0T1 ¼ L1T0 � L1T0. (A.7)

Because T0ðz;j;cÞ ¼ C0ðcÞ, it is easy to show that

L1T0 ¼ �g
ð1Þ
1 ðj;cÞ � z,

where

g
ð1Þ
1 ðj;cÞ ¼ g½2 cos2 j _C0ðcÞ þ p cosj sinjC0ðcÞ�.

The solvability condition of Eq. (A.7) is given by, from Fredholm Alternative ðL1T0 � L1T0;T
	
0Þ ¼ 0, where

ðf ; gÞ denotes the inner product of functions f ðz;j;cÞ and gðz;j;cÞ defined as

ðf ; gÞ ¼

Z 2p

c¼0

Z p

j¼0

Z þ1
z¼�1

f ðz;j;cÞgðz;j;cÞdzdjdc.

Hence,

L1 ¼
ðL1T0;T

	
0Þ

ðT0;T
	
0Þ

¼
1

ðT0;T
	
0Þ
f�ghzi½2 cos2 jh _C0ðcÞi þ p cosj sinj�g ¼ 0,

in which hf ðzÞi ¼
Rþ1
�1

f ðzÞZ	0ðzÞdz is the expected value of f ðzÞ, with z being a normally distributed random

variable with mean zero and standard deviation sz, gðjÞ ¼
R p
0 gðjÞF	0ðjÞdj, and hhðcÞi ¼

R 2p
0 hðcÞC	0ðcÞdc.
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The first-order perturbation equation becomes

L0T1 ¼ g
ð1Þ
1 ðj;cÞ � z. (A.8)

From Xie [8], it is shown that a solution of the equation L0Tðz;j;cÞ ¼ f ðzÞgðj;cÞ is given by

Tðz; ĵ; s;cÞ ¼
Z s

0

gðĵ� r;cÞE½f ðzðrÞÞ�dr, (A.9)

where E½f ðzðrÞÞ� is the expected value of the random variable f ðzðrÞÞ, in which zðrÞ is the normally distributed
random variable with the mean value and variance given by

mzðrÞ ¼ ze�aðr�sÞ; s2zðrÞ ¼
s2

2a
½1� e�2aðr�sÞ�.

The solution Tðz;j;cÞ is then obtained by replacing j ¼ ĵ� s and passing the limit s!�1.
Hence, the solution of Eq. (A.8) is

T1ðz;j;cÞ ¼ G
ð1Þ
1 ðj;cÞ � z,

where

G
ð1Þ
1 ðj;cÞ ¼ �

g
2aða2 þ 4Þ

½2ða2 cos 2jþ 2a sin 2jþ a2 þ 4Þ _C0ðcÞ

þ paða sin 2j� 2 cos 2jÞC0ðcÞ�.

A.3. Second-order perturbation

Since L0ðpÞ ¼ L1ðpÞ ¼ 0, the second-order perturbation equation is L0T2 ¼ L2T0 � L1T1 � L2T0.
From Fredholm Alternative, the solvability condition is ðL2T0 � L1T1 � L2T0;T

	
0Þ ¼ 0. It is easy to

show that

L2T0 ¼ D _C0ðcÞ � m sinðc� 2jÞ½2 cos2 j _C0ðcÞ þ p cosj sinjC0ðcÞ�,

L1T1 ¼ �S
ð1Þ
1 ðj;cÞ � z� S

ð1Þ
2 ðj;cÞ � z

2,

where

S
ð1Þ
1 ðj;cÞ ¼ g½2 cos2j _C0ðcÞ þ p cosj sinjC0ðcÞ�,

S
ð1Þ
2 ðj;cÞ ¼ g cos2j 2

qG
ð1Þ
1

qc
þ

qG
ð1Þ
1

qj

 !
þ p cosj sinjG

ð1Þ
1

" #
.

The solvability condition becomesZ 2p

c¼0

Z p

j¼0

Z þ1
z¼�1
ðL2T0 � L1T1 � L2T0ÞZ

	
0ðzÞF

	
0ðjÞC

	
0ðcÞdzdjdc ¼ 0,

or Z 2p

c¼0

Z p

j¼0
½L2C0ðcÞ þ hz

2
iS
ð1Þ
2 ðj;cÞ � D _C0ðcÞ

�

þ m sinðc� 2jÞð2 cos2j _C0ðcÞ þ p cosj sinjC0ðcÞÞ� dj
�
C	0ðcÞdc ¼ 0. ðA:10Þ

Since Eq. (A.10) is valid for an arbitrary function C	0ðcÞ, the solvability condition leads toZ p

j¼0
½L2C0ðcÞ þ hz

2
iS
ð1Þ
2 ðj;cÞ � D _C0ðcÞ

þ m sinðc� 2jÞð2 cos2j _C0ðcÞ þ p cosj sinjC0ðcÞÞ�dj ¼ 0,
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or

a €C0ðcÞ þ ðbþ 2q sincÞ _C0ðcÞ þ ½L2 þ cpð pþ 2Þ � pq cosc�C0ðcÞ ¼ 0, (A.11)

where

a ¼ �
g2s2ð3a2 þ 8Þ

4a2ða2 þ 4Þ
; b ¼ �

8aDþ 2a3Dþ g2s2

2aða2 þ 4Þ
; c ¼ �

g2s2

16ða2 þ 4Þ
; q ¼

m
4
.

Hence, the second-order perturbation of the moment Lyapunov exponent L2ðpÞ is the eigenvalue of the
eigenvalue problem described in Eq. (A.11) with a second-order ordinary differential operator, in which C0ðcÞ
is the associated eigenfunction.
Appendix B. lð8Þ2 in the primary parametric resonance region

lð8Þ2 ¼ �
N ð8Þ

Dð8Þ
, ðB:1Þ

N ð8Þ ¼ 2ð2aþ cÞq16 þ 10ð520a3 þ 80a2cþ ab2
� 4b2cÞq14 þ 10ð36 312a5 þ 10 160a4c

þ 237a3b2
þ 106a2b2c� 3ab4

þ 26 b4cÞq12 þ ð10 249 920a7 þ 4 461 120a6c

þ 231 524a5b2
þ 59 888a4b2cþ 1555a3b4

� 5540a2b4cþ 71ab6
� 628b6cÞq10

þ 2ð66 427 200a9 þ 43 352 640a8cþ 3 631 388a7b2
þ 1 921 132a6b2cþ 42 147a5b4

þ 65 583a4b4c� 798a3b6
þ 8178a2b6c� 37ab8

þ 367b8cÞq8 þ ð16a2 þ b2
Þ


ð25a2 þ b2
Þfð1 998 864a7 þ 1 985 760a6cþ 26 256a5b2

� 21 400a4b2cþ 591a3b4

� 1700a2b4cþ 39ab6
� 460b6cÞq6 þ ð9a2 þ b2

Þð36a2 þ b2
Þf2ð7840a5 þ 12 964a4c

� 85a3b2
� 493a2b2c� 5ab4

þ 79b4cÞq4 þ ð4a2 þ b2
Þð49a2 þ b2

Þ½ð64a3 þ 224a2c

þ ab2
� 28b2cÞq2 þ 2cða2 þ b2

Þð64a2 þ b2
Þ�gg, ðB:2Þ

Dð8Þ ¼ q16 þ 20ð20a2 � b2
Þq14 þ 10ð5080a4 þ 53a2b2

þ 13b4
Þq12 þ 2ð1 115 280a6

þ 14 972a4b2
� 1385a2b4

� 157b6
Þq10 þ ð43 352 640a8 þ 1 921 132a6b2

þ 65 583a4b4

þ 8178a2b6
þ 367b8

Þq8 þ ð16a2 þ b2
Þð25a2 þ b2

Þf10ð99 288a6 � 1070a4b2
� 85a2b4

� 23b6
Þq6 þ ð9a2 þ b2

Þð36a2 þ b2
Þfð12 964a4 � 493a2b2

þ 79b4
Þq4 þ ð4a2 þ b2

Þ


ð49a2 þ b2
Þ½14ð8a2 � b2

Þq2 þ ða2 þ b2
Þð64a2 þ b2

Þ�gg. ðB:3Þ
Appendix C. Perturbation analysis—secondary resonance

C.1. Zeroth-order perturbation

The zeroth-order perturbation equation is L0T0 ¼ L0T0, which is the same as that in the case of the primary
parametric resonance (Eq. (A.1)). Following the same procedure as in Section A.1, L0ð pÞ ¼ 0 and
T0ðz;j;cÞ ¼ C0ðcÞ, where C0ðcÞ is a periodic function of period 2p. The solution of the associated adjoint
equation given by Eq. (A.2) is T	0ðz;j;cÞ ¼ Z	0ðzÞF

	
0ðjÞC

	
0ðcÞ, where

F	0ðjÞ ¼
1

2p
; 0pjo2p, (C.1)

which is the probability density function of a random number uniformly distributed in ð0; 2pÞ, Z	0ðzÞ is given by
Eq. (A.6), and C	0ðcÞ is an arbitrary periodic function of period 2p.
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C.2. First-order perturbation

Since L0ð pÞ ¼ 0, the first-order perturbation equation becomes L0T1 ¼ L1T0 � L1T0. The solvability
condition is, from Fredholm Alternative, ðL1T0 � L1T0;T

	
0Þ ¼ 0, where ðf ; gÞ denotes the inner product of

functions f ðz;j;cÞ and gðz;j;cÞ defined as

ðf ; gÞ ¼

Z 2p

c¼0

Z 2p

j¼0

Z þ1
z¼�1

f ðz;j;cÞgðz;j;cÞdzdjdc.

Because T0ðz;j;cÞ ¼ C0ðcÞ, one has

L1T0 ¼ ½�gzþ m sinðj� cÞ� � ½cos2j _C0ðcÞ þ p cosj sinjC0ðcÞ�,

and the solvability condition leads to

L1 ¼
1

ðT0;T
	
0Þ

Z 2p

c¼0
½�ghzi þ m sinðj� cÞ� � ½cos2j _C0ðcÞ þ p cosj sinj�C	0ðcÞdc,

¼ 0,

where hf ðzÞi ¼
Rþ1
�1

f ðzÞZ	0ðzÞdz is the expected value of f ðzÞ, with z ¼ Nð0; szÞ, and gðjÞ ¼
R 2p
0 gðjÞF	0ðjÞdj.

The first-order perturbation equation becomes

L0T1 ¼ g
ð1Þ
0 ðj;cÞ þ g

ð1Þ
1 ðj;cÞ � z, (C.2)

where

g
ð1Þ
0 ðj;cÞ ¼ �m sinðj� cÞ½cos2j _C0ðcÞ þ p cosj sinjC0ðcÞ�,

g
ð1Þ
1 ðj;cÞ ¼ g½cos2j _C0ðcÞ þ p cosj sinjC0ðcÞ�.

The solution of Eq. (C.2) can be obtained by using Eq. (A.9) and is

T1ðz;j;cÞ ¼ G
ð1Þ
0 ðj;cÞ þ G

ð1Þ
1 ðj;cÞ � z,

where

G
ð1Þ
0 ðj;cÞ ¼

m
12
f½4 cosc� 4p sincþ cosðjþ cÞ � 6 cosðj� cÞ � cosð3j� cÞ� _C0ðcÞ

þ p½3 sinðjþ cÞ � sinð3j� cÞ�C0ðcÞg,

G
ð1Þ
1 ðj;cÞ ¼ �

g
2aða2 þ 4Þ

½2ða2 cos 2jþ 2a sin 2jþ a2 þ 4Þ _C0ðcÞ

þ paða sin 2j� 2 cos 2jÞC0ðcÞ�.

C.3. Second-order perturbation

Since L0ð pÞ ¼ L1ð pÞ ¼ 0, the second-order perturbation equation is reduced to L0T2 ¼ L2T0�

L1T1 � L2T0. It is easy to show that

L1T1 ¼ m sinðj� cÞSð1Þ0 � ½gS
ð1Þ
0 � m sinðj� cÞSð1Þ1 � � z� gS

ð1Þ
1 � z

2,

L2T0 ¼ D _C0ðcÞ,

where

S
ð1Þ
i ðj;cÞ ¼ cos2j

qG
ð1Þ
i

qj
þ

qG
ð1Þ
i

qc

 !
þ p cosj sinjG

ð1Þ
i ; i ¼ 0; 1.
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The solvability condition of the second-order perturbation equation is, from Fredholm Alternative,
ðL2T0 � L1T1 � L2T0;T

	
0Þ ¼ 0, which leads toZ 2p

c¼0

Z 2p

j¼0
½L0C0ðcÞ � m sinðj� cÞSð1Þ0 þ gS

ð1Þ
1 hz

2
i � D _C0ðcÞ�dj

� �
C	0ðcÞdc ¼ 0. (C.3)

Because Eq. (C.3) is valid for an arbitrary periodic function C	0ðcÞ, one must haveZ 2p

j¼0
½L0C0ðcÞ � m sinðj� cÞSð1Þ0 þ gS

ð1Þ
1 hz

2
i � D _C0ðcÞ�dj ¼ 0,

which yields, after integration,

a €C0ðcÞ þ ðbþ q cos 2cÞ _C0ðcÞ þ ½L2 þ cpðpþ 2Þ þ pq sin 2c�C0ðcÞ ¼ 0, (C.4)

where

a ¼ �
g2s2ð3a2 þ 8Þ

16a2ða2 þ 4Þ
; b ¼ �

aða2 þ 4Þðm2 þ 12DÞ þ 3g2s2

12aða2 þ 4Þ
; c ¼ �

g2s2

16ða2 þ 4Þ
; q ¼

m2

8
.

Hence, the second-order perturbation of the moment Lyapunov exponent L2 is given by the eigenvalue of
system described by Eq. (C.4) with a second-order ordinary differential operator.

Appendix D. lð8Þ2 in the secondary parametric resonance region

lð8Þ2 ¼ � 2
N ð8Þ

Dð8Þ
, ðD:1Þ

N ð8Þ ¼ ð40aþ cÞq16 þ 80ð2080a3 þ 80a2cþ ab2
� b2cÞq14 þ 160ð1 161 984a5 þ 81 280a4c

þ 1896a3b2
þ 212a2cb2

� 6ab4
þ 13b4cÞq12 þ 128ð655 994 880a7 þ 71 377 920a6c

þ 3 704 384a5b2
þ 239 552a4b2cþ 6220a3b4

� 5540a2b4cþ 71ab6
� 157 b6cÞq10

þ 256ð68 021 452 800a9 þ 11 098 275 840a8cþ 929 635 328a7b2
þ 122 952 448a6b2c

þ 2 697 408a5b4
þ 1 049 328a4b4c� 12 768a3b6

þ 32 712a2b6c� 148ab8
þ 367b8cÞq8

þ 2048ð64a2 þ b2
Þð100a2 þ b2

Þfð127 927 296a7 þ 31 772 160a6cþ 420 096a5b2

� 85 600a4b2cþ 2364a3b4
� 1700a2b4cþ 39ab6

� 115 b6cÞq6 þ 2ð36a2 þ b2
Þ


ð144a2 þ b2
Þfð501 760a5 þ 207 424a4c� 1360a3b2

� 1972a2b2c� 20ab4

þ 79b4cÞq4 þ 8ð16a2 þ b2
Þð196a2 þ b2

Þ½ð256a3 þ 224a2cþ ab2
� 7b2cÞq2

þ 2cð4a2 þ b2
Þð256a2 þ b2

Þ�gg, ðD:2Þ

Dð8Þ ¼ q16 þ 80 ð80a2 � b2
Þq14 þ 160ð81 280a4 þ 212a2b2

þ 13b4
Þq12

þ 128ð71 377 920a6 þ 239 552a4b2
� 5540a2b4

� 157b6
Þq10

þ 256ð11 098 275 840a8 þ 122 952 448a6b2
þ 1 049 328a4b4

þ 32 712a2b6
þ 367b8

Þq8

þ 2048ð64a2 þ b2
Þð100a2 þ b2

Þf5ð6 354 432a6 � 17 120a4b2
� 340a2b4

� 23b6
Þq6

þ 2ð36a2 þ b2
Þð144a2 þ b2

Þfð207 424a4 � 1972a2b2
þ 79b4

Þq4

þ 8ð16a2 þ b2
Þð196a2 þ b2

Þ½7ð32a2 � b2
Þq2 þ 2ð4a2 þ b2

Þð256a2 þ b2
Þ�gg. ðD:3Þ
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