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Abstract

The moment Lyapunov exponents and the Lyapunov exponents of a two-dimensional system under combined
excitations of harmonic and real noise, which is modelled as an Ornstein—Uhlenbeck process, are studied. The moment
Lyapunov exponents and the Lyapunov exponents are important characteristics determining the moment and almost-sure
stability of a stochastic dynamical system. The eigenvalue problem governing the moment Lyapunov exponent is
established. A regular perturbation method is applied to solve the eigenvalue problem to obtain second-order, weak noise
expansions of the moment Lyapunov exponents. The influence of the real noise excitation on the parametric resonance due
to the harmonic excitation is investigated.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of the dynamic stability of elastic systems, such as slender columns and thin plates under
axial loading, or buildings, bridges, and aircraft structures under wind loading, frequently leads to the study of
the dynamical behaviour of the solutions of a parametrized family of differential equations of the form

x=f(x,7), x=(x1,x,...,x,)" €R", £(0,7)=0, (1)

where y is a scalar parameter characterizing the load condition.

In many practical situations, the loading may be subjected to fluctuations of a stochastic nature, such as
those arising from earthquakes, wind, and ocean waves. White noise has been widely used in engineering
applications for the modelling of noise processes because of its simplicity and the availability of rigorous
mathematical theory. However, white-noise does not exist as a physically realizable process and the
singular behaviour it exhibits does not arise in any realizable context. On the other hand, the
Ornstein—Uhlenbeck process is a simple, Gaussian, explicitly representable stationary process, and is often
used to model a realizable noise process. The Ornstein—Uhlenbeck process is given by
dé(f) = —al()dt + o dW (1), where W(t) is a standard Wiener process. Letting ¢ = +/2Du, the correlation
function and spectral density of the Ornstein—Uhlenbeck process &(f) are R(r) = Doe 7 and

*Tel.: +15198884567x33988; fax: +15198886197.
E-mail address: xie@uwaterloo.ca.

0022-460X/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2006.12.030


www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.12.030
mailto:xie@uwaterloo.ca

110 W.-C. Xie | Journal of Sound and Vibration 303 (2007) 109-134

S(w) = D[1 + (»/ «)?]”", in which the parameter o characterizes the bandwidth of the noise and D is related to
the spectral density of the noise. When o« = ¢ — oo, the Ornstein—Uhlenbeck process &(f) approaches
V2DW(t), where W(f) denotes formally a unit Gaussian white-noise process. Hence, if one sets D = %,
o = ¢ — 00, the Ornstein—Uhlenbeck process &(7) approaches the unit Gaussian white-noise process W(f).

There are engineering situations where the loading on the system contains both periodic components and
stochastic fluctuations. An example of such a system is the uncoupled flapping motion of rotor blades in
forward flight under the effect of atmospheric turbulence.

The sample or almost-sure stability of the trivial solution of system, described by Eq. (1) is determined by

the Lyapunov exponent of its linearized system
X = Dyf(x, 7)|x=0X. 2)

The Lyapunov exponents, which are deterministic numbers, characterize the average exponential rates of
growth of the solutions of the system when the time parameter ¢ is large, and is defined by

.1
4= lim —log [Ix(1)]l, 3)
t—oo
where || - || denotes the Euclidean vector norm. In Eq. (3), [|x(?)| is a stochastic process and the limit exists

almost-surely or with probability one (w.p.1). In other words, the almost-sure convergence guarantees that the
limit given by Eq. (3) exists except for a set of solutions x(f) with probability zero. Depending on the initial
conditions x(0), there are n Lyapunov exponents for the system described by Eq. (2). The trivial solution of the
dynamical system is stable with probability one if the top Lyapunov exponent is negative, whereas it is
unstable with probability one if the top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment, E[||x(¢)||’], of the trivial solution of the dynamical
system is determined by the pth moment Lyapunov exponent, a deterministic number, defined by

Ap) = Jim ~log E[Ix(0)I), @)

where E[-] denotes expected value. Eq. (4) defines the Lyapunov exponent of the pth moment E[||x(¢)||”], which
is a deterministic function of #, rather than a stochastic process; the convergence of the limit is thus understood
in the ordinary sense for deterministic functions. If A(p) <0, then E[||x(?)||’] — 0 as t — oco. The pth moment
Lyapunov exponent A(p) is a convex analytic function in p with A4(0) =0 and A’(0) is equal to the top
Lyapunov exponent A. The non-trivial zero ¢ of A(p), i.e. A(d) = 0, is called the stability index.

To have a complete picture of the dynamic stability of a dynamical system, it is important to study both the
sample and moment stability and to determine both the top Lyapunov exponent and the pth moment
Lyapunov exponent. A systematic presentation of the theory of random dynamical systems and a
comprehensive list of references can be found in Arnold [1].

Although the moment Lyapunov exponents are important in the study of dynamic stability of
stochastic systems and it is relatively straightforward to set up the partial differential eigenvalue problems
governing the moment Lyapunov exponents (see, e.g. Refs. [2,3]), the actual evaluations of the moment
Lyapunov exponents are very difficult. In the last decade, researchers have attempted to devise various
approaches to obtain approximate results of the moment Lyapunov exponents. However, only a few results
have been published so far. Using the analytic property of the moment Lyapunov exponents, Arnold et al. [4]
obtained weak noise expansions of the moment Lyapunov exponents of a two-dimensional system in terms of
&p, where ¢ is a small parameter, under both white-noise and real noise excitations. Khasminskii and
Moshchuk [5] obtained an asymptotic expansion of the moment Lyapunov exponent of a two-dimensional
system under white-noise parametric excitation in terms of the small fluctuation parameter ¢, from which the
stability index was obtained. Sri Namachchivaya and Vedula [6] obtained a general asymptotic approximation
for the moment Lyapunov exponent and the Lyapunov exponent for a four-dimensional system with one
critical mode and another asymptotically stable mode driven by a small intensity stochastic process.
Sri Namachchivaya and Van Roessel [7] studied the moment Lyapunov exponents of two coupled
oscillators driven by real noise. Xie obtained weak noise expansions of the moment Lyapunov exponent,
the Lyapunov exponent, and the stability index, in terms of the small fluctuation parameter, of a
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two-dimensional system exhibiting pitch-fork bifurcation under real noise excitation [8] and under bounded
noise excitation [9].

The almost-sure stability of dynamical systems under combined harmonic and stochastic excita-
tions was first studied by Sri Namachchivaya [10] by evaluating the largest Lyapunov exponents.
Weak noise expansions of the moment Lyapunov exponents and Lyapunov exponents of two-
dimensional systems under both harmonic and white-noise excitations were studied by Baxendale [11] and
Xie [12].

In this paper, a two-dimensional system under combined parametric excitations of harmonic and real noise,
which is a more realistic model of noises in engineering applications, is studied. Weak noise expansions of the
moment Lyapunov exponents and Lyapunov exponents are obtained. The effect of the real noise excitation on
the parametric resonance due to the harmonic excitation is investigated. Because of the extra harmonic
excitation in the stochastic equation of motion, the eigenvalue problem governing the moment Lyapunov
exponent is a second-order partial differential equation with three independent variables. The perturbation
approach used in solving the eigenvalue problem is more complex and significantly different from that applied
in Ref. [8], in which the moment Lyapunov exponent is governed by a second-order partial differential
eigenvalue problem with only fwo independent variables.

2. Formulation
2.1. Equations of motion

Consider a two-dimensional system under combined harmonic and real noise excitations as follows:

q"(t) + 26Bq (1) + [ + et sin ot + 70 E(D]g(v) = 0, )

where ¢>0 is a small parameter, p is a proper scaling parameter to be determined so that the contributions of
the harmonic and real noise excitations are comparable, and £(7) is a real noise process in time 7, modelled as
an Ornstein—Uhlenbeck process, given by

dé(r) = —apé(r)dt + oo dW(n), (6)
in which W(z) is a standard Wiener process in time .
The damping term in Eq. (5) can be removed by applying the transformation ¢(t) = x(t)e~*’* to yield
X'(t) + [Q% + epg sin ot + &9, E(7)]x (1) = 0, (7

where Q* = Q% — &2, Eq. (6) can be further simplified by applying the time scaling 1 = Qt. The time scaling
reduces Egs. (7) and (6) to

X(8) + [1 + epsin vt + ’y{(8)]x(z) = 0, (®)
di(t) = —al(t)dt + o dW(2), 9)
where
M _Fo W % 00
—Qa —Qs V_Qz’ _Q’ —m’

and W(t) is the standard Wiener process in time ¢.
In the absence of the real noise excitation, i.e. when y = 0, Eq. (8) reduces to the Mathieu’s equation

X(¢) 4+ (1 4 eusinve)x(t) = 0.

The nth-order parametric resonance occurs when the frequency of the sinusoidal excitation v is in the vicinities
of 2/n, n=1,2,.... When v~ 2, the primary resonance occurs. The first-order approximation of the
instability region can be obtained using the method of averaging or the method of multiple scales and is given
by (see, e.g. Ref. [13])

2 — %(su)<v<2 + %(s,u).
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For a given value of u, the width of the primary instability region is eu, i.e. of the order & In the
instability region, the trivial solution (x,Xx)=(0,0) becomes unstable and grows exponentially.
When v & 1, the secondary resonance occurs and the first-order approximation of the instability region is
given by

— 5(en) V< + y(en)’.

For a given value of u, the width of the secondary instability region is %(s,u)z, which is of the order &.
On the other hand, when the amplitude of the sinusoidal excitation u is zero, Eq. (8) is a single degree-of-
freedom system under real noise parametric excitation

X(1) + [1 + &”yL(0)]x(r) = 0.

From the method of stochastic averaging [13—15], it is well known that for the noise to have a contribution of
the order of &, the noise should be of the order &!/2, i.e. p=1/2.

When studying the effect of noise on the parametric resonance of Mathieu’s equation, it is important to
properly scale the noise so that the effects of the noise and the sinusoidal excitations are comparable. If the
noise is too weak, it has no effect on the parametric resonance in the first-order approximation. On the other
hand, if the noise is too strong, it overpowers the sinusoidal excitation and the effect of parametric resonance
is of a higher order.

For the primary resonance, the effect of the sinusoidal excitation is of the order ¢. Hence, the order of the
real noise is taken as ¢'/2, i.e. p = 1/2. For the secondary resonance, the effect of the sinusoidal excitation is of
the order &%, which leads to that the order of the real noise must be ¢, i.e. p = 1, to have a comparable
contribution.

2.2. Establishing the eigenvalue problem governing the moment Lyapunov exponents

The moment and almost-sure stability of the system described by Eq. (8) are determined by the moment
Lyapunov exponent and the top Lyapunov exponent, respectively. The Lyapunov exponents and the moment
Lyapunov exponents of the systems described in Egs. (5), (7), and (8) are related by the following
relationships:

Agr) = —&f 4 Ax) = —&B + QAx),

Ay (p) = —epB + Axy)(p) = —epP + QA1 (p)-

The moment Lyapunov exponent of system of Eq. (8) is the eigenvalue of a eigenvalue problem. In this
section, two approaches are presented to establish the partial differential eigenvalue problem governing the
pth moment Lyapunov exponent.
The first approach uses the theory of stochastic dynamical system [2]. Denoting 6 = vt, € may be considered
as a random process with generator Gy = v0/00. The real noise {(¢) defined by Eq. (9) has the generator
o> : 3

r=———al—.

c 29 o
Letting x; = x, x, = x, Eq. (8) may be written in the form of state equations

dx = Boxdr + BixdW, (10)
X
X = { }’ BO =
X2

Applying the Khasminskii transformation [16]:

X X3 ) S1 Cos @ . sin ¢ "
=—=COSQ, = — =39S , S = = . 5 S = 5
SN T R T o =) sing —cos g (1

where

0 1 00
(1 +eusin0+e7y0) 0] Bl:[o 0}'
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where ||x|| =/x7+x3 is the Euclidean norm of vector x, the random process X is projected
onto the unit sphere s. The moment Lyapunov exponent A,,(p) of the system described by
Egs. (8), or Eq. (10) in the form of state equations, is the principal eigenvalue of the eigenvalue
problem [2]

g(p)T(C’ P, 0) = Ax(l)(p) T(Ca P, 0)’ (12)

where Z(p) = G; + Go+ L+ pX + pQ + 1p*R.
To evaluate L, X, Q, and R, it is necessary to determine f;, /;, and ¢;, for i = 0 and 1, which are given by

B=8TBs, o= 1+ (eusind+ e y0cos’p,  fy =0,

0 . 0
= —ﬁi@, hy = —[1 4 (eusin 0 + sf’yg“)cosz(p]@, h =0,

g, =s'B;s, ¢, =—(eusin0+y0)cospsing, ¢, =0.

Hence,

L=hy+3h = —[1 + (eusin0 + apyC)coszqo]ai,
®

X = QIhl = 0,
0=gq,— T(Bl + BT)BIS = —(eusin 0 + &’ y{) cos ¢ sin @,
R= q% =0.

Therefore, the infinitesimal differential operator £ (p) is given by
2

1,0 0
ZL(p) =5 2§— C C Y30 — [1 + (eusin 0 + °y{)cos> q)]——p(ausm6+8”yC)COS(psm(p (13)
The eigenvalue problem (Eq. (12)) with the infinitesimal differential operator given by Eq. (13) can also be
derived by using a more intuitive approach. This second approach was originally employed by Wedig [3] to
derive the eigenvalue problem for the moment Lyapunov exponent of a two-dimensional linear Itd stochastic
system.

Rewrite Eqgs. (8) and (9) as a four-dimensional system as

X1 X2 0
—(1 + eusin O + & 0

gd 2\ ) TUrasinfrednOn L dw. (14)
¢ —al o
0 v 0

Employing the Khasminskii transformation shown in Eq. (11) and defining the pth norm P = |x||?,
the It6 differential equations for the pth norm P and the angle ¢ can be obtained by using Ito’s
Lemma:

P —pP(eusin 0 + e’y{)cos ¢ sin ¢ 0
—[1 + (eusin 0 + & 2 0

DA [1 + (epsin 0 + &#y{) cos” o] di + dw. (15)
¢ —af o
0 v 0

Applying a linear transformation

S=Te,0)P, P=T"'( 0,08, 0<p<n 0<60<2m,
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the Ito differential equation for the transformed pth norm process S can also be obtained by using Ito’s
Lemma:

dS = {§6’Ty; — 0l Ty +vTy — [1 + (eusin 0 + &”y0) cos* 9] T,
—p(eusin0 + e”y0)cos psinpT}Pdt + a T PdW. (16)

For a bounded and non-singular transformation 7'({, ¢, 0), both processes P and S are expected to have the
same stability behaviour. Therefore, T'({, ¢, 0) is chosen so that the drift term of the It6 differential given in
Eq. (16) is independent of the processes {, ¢, and 6, i.e.,

dS = ASdt+oT,T7'SdW. (17)

Comparing the drift terms in Egs. (16) and (17), it is seen that such a transformation 7'({, ¢, 0) is the
eigenfunction of the eigenvalue problem

%az T —olT:+vTo—[1 4 (eusin 0 + ”y0) cosz(p]Tq,
— pleusin 0 + ¢?yp{)cos @ sin T = AT (18)

with A being the eigenvalue.

From Eq. (17), it is clear that A is the Lyapunov exponent of the transformed pth norm process S; hence A is
the moment Lyapunov exponent of system (14) or (8), i.e. 4 = A (p). By comparing Eqgs. (12) and (13) with
Eq. (18), it is seen that the eigenvalue problem governing the moment Lyapunov exponent A = A (p).
derived by using the general theory of moment Lyapunov exponent [2], is the same as that derived by using a
more intuitive approach originally employed by Wedig [3].

3. Moment Lyapunov exponents

As mentioned earlier, in the absence of the real noise excitation, the system described by Eq. (8) is in
parametric resonance when v is in the vicinity of 2,1 ,3,... . In this paper, the effect of real noise on the
primary and the secondary parametric resonance is studied through the determination of the moment
Lyapunov exponent. Let the harmonic excitation frequency v = vy + &"4,n = 1,2, where vy =2/n is the
harmonic excitation frequency corresponding to a parametric resonance of order # in the absence of the real
noise excitation, and A4 is the mistune parameter.

In this section, the stochastic stability of the system described by Eq. (8) is studied through the
determination of the moment Lyapunov exponent A, (p) by solving the eigenvalue problem (Eqgs. (12) or
(18)). A method of regular perturbation (see, e.g. Ref. [17]) is applied to obtain weak noise expansions of the
moment Lyapunov exponent A, (p) and the Lyapunov exponent Ay).

3.1. Primary parametric resonance, n =1, p = —, and vy—

3.1.1. Method of regular perturbation

In the absence of the real noise excitation, the system described in Eq. (8) is in primary parametric resonance
when v = vy + ¢4, vy = 2. Applying the transformation 0 =y — 2¢, the infinitesimal differential operator in
Eq. (12) becomes

L(p) = Lo+ ¢"/’L| + ¢L,, (19)
where
o2 o o 0

LO:?a_CZ_aCa_é_@,

6 0
L = —y(|cos’p ap 6 +pcosgsing|,
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Ly=4 % — usin(y — 2¢) [cosch <26?ﬁ + ai;) + pcos ¢ sin (p] .

Expand the moment Lyapunov exponent A, (p) and the eigenfunction T'({, ¢, ¥):
A\(t)(p) = Z Si/zAi(p)’ T(C’ ®, l,b) = Z 8i/2 Ti(C: ®, l//)’ (20)
i=0 i=0

where T({, @,y) are periodic functions in ¢ of period = and in y of period 2zn. Substituting Eq. (20)
into Eq. (19), expanding, and equating terms of equal power of ¢ results in the perturbation
equations,

Zeroth-order:  LoTo = A¢Ty,

First-order: LoT+ L1To=A1To+ AT,

Second-order: LoTr+ LT+ LyTo= ATy + AT+ AT, 1)

Third-order: LoTs+ L1Tr+ LTy = A3Tog+ ATy + AT + AgTs,

By solving the zeroth-order, first-order, and second-order perturbation equations in Eq. (21), it is shown in
Appendix A that Ay(p) = A1(p) =0 and A,(p) is given by the eigenvalue of the second-order ordinary
differential eigenvalue problem (Eq. (A.11)), i.e.

ao() + (b + 2gsin ) Po(y) + [42 + ep(p + 2) — pgcos Y]¥o(h) = 0, (22)

where the coefficients a, b, ¢, and ¢ are given in Appendix A.

3.1.2. Determination of A,

The second-order perturbation of the moment Lyapunov exponent A, can be obtained by solving the
eigenvalue problem given in Eq. (22). Since the coefficients of Eq. (22) are periodic functions of period 27, a
series expansion of the eigenfunction ¥,(iy) may be taken:

N
Wo() = Co+ > _ (Cicosky + Sisin k), (23)
=1
where Co, Cy, Sk, k=1,2,...,N, are constants to be determined. Substituting Eq. (23) into
Eq. (22), multiplying the resulting equation by cosmyy, sinmy, m=0,1,...,N, respectively, and
integrating with respect to ¥ from 0 to 2z results in a set of 2N 4+ 1 homogeneous linear equations for the
unknown  coefficients Cy, Ci, Sy, k=1,2,....N. In order to have a non-trivial
solution, the determinant of the coefficient matrix of these 2N + 1 linear algebraic equations A®
must be zero. The determinantal equation A"Y) leads to a polynomial equation of degree 2N + 1 in A, of
the form

AN oy AN 4 di Ay +dy = 0. @4

An approximate result of A, can be obtained by solving Eq. (24). Note that the exact result of A, is obtained
when the number of terms N — oo.
When N =1, Eq. (24) is a cubic equation, the coefficients of which are

do = p® + 6°p° — (2ac® — 126 + eg)p* — (8ac® — 8¢* + 2¢q*)p’
+ (lag* — 8ac® — 2¢q* + bPc + d*o)p* + b c + ag® + 2a*o)p,

d, = 3cp* + 127p° — (dac — 126 + %qz)p2 — (8ac+ ¢Pp + & + b,

d» = 3cp® + 6¢p — 2a.
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The solution of Eq. (24) with N = 1 is given by

where

1

AP = E(Az —2d>) —

23d) — d;
34

Ay = (—108dy + 36d,dy — 8d3 + 124,)'°,
Ay = 81d2 — S4dyd dy + 12d7 + 12dod} — 3d3d3)"2.

(25)
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When N >1, there is no analytical solution available for Eq. (24) and numerical approach has to be
employed to find an approximate root A(ZN ). In Fig. 1, the analytical result Agl) is plotted along with the
numerical result Agg). It is seen that, for a given value of u = 1, the two results agree extremely well for all
values of ¢. On the other hand, for a given value of ¢ = 1, A(zl) and /158) agree very well for smaller values of u
up to 2. When the value of u increases, discrepancies exist between A(zl) and A(28). Three-dimensional surface
plots of /1(28) are shown in Fig. 2 for u = 1.0,y = 1.0, 2 = 1.0, and ¢ = 0.5, 1.0, and 1.5. As mentioned earlier,
the system described by Eq. (8) is in primary parametric resonance in the absence of the real noise excitation.
To study the influence of the real noise excitation and the harmonic excitation on the parametric resonance
and the moment Lyapunov exponent, Agg) are shown in Fig. 3 for u = 1.0, y = 2.0, « = 1.0, and ¢ = 0.5 and
1.0, and in Fig. 4 for u = 2.0,y = 1.0, « = 1.0, and ¢ = 0.5 and 1.0.
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p

Fig. 4. Second-order perturbation of moment Lyapunov exponent AP, primary resonance, i = 2.0, y = 1.0 and « = 1.0. (a) 6 = 0.5 and
(b) s =1.0.

It is noted that the use of truncated Fourier series given in Eq. (23) with relatively small values of N results
in accurate approximations of the moment Lyapunov exponents for the system of Eq. (8). However, no
general statement can be made beyond the system considered in this paper. When an approximate value A(zN ) is
obtained from Eq. (24), an approximation of the moment Lyapunov exponent is given by
A (p) = sAgN )+ o(e).

It is seen that for small values of the noise intensity o, small values of the amplitude of the real noise
excitation 7y, or large values of the amplitude of the harmonic excitation u, the influence of the real noise
excitation is small and the harmonic excitation is dominant; hence the effect of the primary parametric
resonance is significant. On the other hand, when the noise intensity o is increased, the amplitude of the real
noise excitation y is large, or the amplitude of the harmonic excitation u is small, the impact of the real noise
excitation intensifies and the prominence of the primary parametric resonance is decreased.

Furthermore, note that when 4 — +o0, the effect of parametric resonance diminishes and the influence of
the harmonic excitation vanishes. Obviously, when u — 0, the influence of the harmonic excitation diminishes.



120 W.-C. Xie | Journal of Sound and Vibration 303 (2007) 109-134

By taking limits of Eq. (25) as 4 — £o00 or u — 0, it can be easily shown that

. . 2y
lim Agl) = lim A(Zl) :‘IM

26
A— o0 u—0 ]6(0(2 +4) ’ (26)

which is the same as the second-order perturbation of the moment Lyapunov exponent of a two-dimensional
system under real noise excitation (Eq. (39) in Ref. [8]).

As mentioned earlier, taking ¢ = o — oo, the real noise, modelled by an Ornstein—Uhlenbeck process,
approaches a unit Gaussian white-noise process. By setting 4 = 0, the system of Eq. (8) becomes a two-
dimensional system under white-noise excitation

dx; = xp dt,

dxy = —x; dt — &'2yx; dW(2). (27)

From Eq. (26), one obtains the moment Lyapunov exponent of the system described by Eq. (27)
pp+2)°

lim Ay~ o lim A8 +o(e) = a=

o=0—> 00 O=0—>00

+ o(e),

which can be easily shown to be the same as the second-order approximation of the moment Lyapunov
exponent of system, described by Eq. (27), obtained by Khasminskii and Moshchuk (Eq. (48) in Ref. [5]).

3.1.3. Determination of 1,
It is well known that the Lyapunov exponent is related to the moment Lyapunov exponent by

Axo(p) AV (p)
P P

From Eq. (28) it can be inferred that A(zN) = O(p) when p — 0, and hence [A(ZN)]k = o(p) for k>1. From Eq.
(24), the second-order perturbation of the Lyapunov exponent is given by

Jxny = lim ~ el +o(e), AN =lim (28)
p—0 p—0

d
W) _ ;.- 4o
Iy = ;1_% 4 (29)

Since the determination of /1(2N) does not require the solution of the polynomial in Eq. (24), a larger value of N
can be taken. When N = 8, 2% is given by 1Y = —N®/D®_ where N® and D® are given in Appendix B. The
expressions of i(zN) for larger values of N are also obtained but are not presented here due to the limitation in
the length of the paper.
When 4 — 400, the effect of the harmonic excitation diminishes and the influence of the real noise
excitation dominates. By taking the indicated limits, it can be shown that, for all values of N,
2 2
~ N _ o ) VO
Agriloo b= plzlil}) A= 8(a2 +4)° (30)
which is the same as the second-order perturbation of the Lyapunov exponent of a two-dimensional system
under real noise excitation (Eq. (52) in Xie [8]).
From Eq. (30), the Lyapunov exponent for the system described by (27) is

2

lirr%) Ity = ei(zN) +o(e) = s% + o(e),
n—

T=0(—> 00

which is the same as that obtained in Refs. [18,19].

Typical plots of /1(2N) are shown in Fig. 5 for ¢ = 1.0 and 2.0. The influence of the real noise excitation on the
parametric resonance can be clearly seen. When ¢ increases, the influence of the harmonic excitation decreases
and the effect of parametric resonance diminishes, resulting in the domination of the real noise excitation. To
study the accuracy of igN ) for different values of N, typical results of /l(zN ) are plotted in Fig. 6 for N =4, 8, and

; 1 (8) (12) ) ; (®) (12)
12. It is seen that 45’ and 4, ~ agree extremely well for all values of u; whereas 4;” agrees with A’ and 4,
very well for smaller values of p up to 6, but some discrepancies exist for larger values of u.
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Fig. 5. Second-order perturbation of Lyapunov exponent 1(2'4) , primary resonance, y = 1.0 and « = 1.0. (a) ¢ = 1.0 and (b) o = 2.0.

In order to check the validity of the perturbation results, a digital simulation is performed. Egs. (8) and (9)
are discretized by using the Euler scheme and the resulting equations are:
x1(t+ At) = x1(¢) + x2(2) - At,
x2(1 + At) = x2(1) — [1 + epsin vt + &' 290 (0)]x1(F) - At
(+AD)=(1—o-AD){(t)+ o - AW(2), (31
where AW (t) = n,+/At, in which n, is a standard normally distributed random number. Note that the Euler

(31) is the same as the Milstein scheme. The numerical algorithm proposed by Wolf, Swift, Swinney and
Vastano [20] for evaluating the Lyapunov exponents of a time series is applied to determine A(). Numerical
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AZ(N)

Fig. 6. Second-order perturbation of Lyapunov exponent /l(zN), primary resonance, y = 1.0, « = 1.0, c = 1.0. e 00, N =12; ---, N =8;
— N=4u=25 - -, N=4,4=50,-—-, N=4,p=75and --——--, N =4, u=10.0.

kx( 1)

Fig. 7. Lyapunov exponent 4., primary resonance, y = 1.0, « = 1.0, ¢ = 1.0, ¢ = 0.1. Dots (o or e), simulation; lines, analytical results,
N=14,— u=10;---, pu=20; - —-—-, u=3.0; - - p=40and --——--, p=5.0.

results of Ay from simulation are plotted in Fig. 7 along with the perturbation results ) & 8/1(214) for various
values of . It is observed that both results agree very well.

3.2. Secondary parametric resonance, n =2, p =1, and vy = 1

In the absence of the real noise excitation, the system described in Eq. (8) is in secondary parametric
resonance when v = vy + &°4, vo = 1. By applying the transformation 0 =y — ¢, the infinitesimal differential
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operator in Eq. (12) becomes
L(p) = Lo+ ¢eLy + &Ly, (32)
where

o’ &’ 0 0

L(] O(C

PR T
. , (0 0 .
Ly =[—y{+ usin(p — )] - [cos“p| —+=—] +pcospsing]|,
oy Q¢
0
LzzAw

Expand the moment Lyapunov exponent A, (p) and the eigenfunction T'({, @, ¥):

Ao(p) =D e Alp), TG o) = & Til, 0,1, (33)
i=0

i=0

where T((, @,{) are periodic functions in ¢ and y of period 2n, respectively. Substituting Eq. (33) into
Eq. (12) with the infinitesimal differential operator #(p) given by Eq. (32), expanding, and equating terms of
equal power of ¢ results in the perturbation equations of the form given in Eq. (21).

Solving the perturbation equations, it is shown in Appendix C that Ay(p) = A;(p) = 0 and A,(p) is the
eigenvalue of the eigenvalue problem of Eq. (C.4) with a second-order ordinary differential operator, i.e.

ao(P) + (b + qcos 2) Po(Y) + [42 + cp(p + 2) + pgsin 2] Po() = 0, (34)

where the coefficients a, b, ¢, and ¢ are given in Appendix C.

3.2.1. Determination of A,

The approach employed in Section 3.1.2 can be applied to determine A, by solving Eq. (C.4) in Appendix.
Since the coefficients of system described by Eq. (C.4) are periodic functions of period =, a series expansion of
the eigenfunction ¥((y) can be taken as

N
Wo) = Co+ » _(Cax cos 2k + Sy sin 2kip), (35)
k=1

where Cy, Cor, S, k= 1,2,..., N are coefficients to be determined. By substituting Eq. (35) into Eq. (C.4),
multiplying by cos2mys, sin2myy, m = 0, 1,..., N, respectively, and integrating with respect to y from 0 to =
leads to a system of 2N + 1 homogeneous linear algebraic equations for the unknown coefficients Co, Cax, Sok,
k=1,2,...,N. The polynomial Eq. (24) is required in order to have non-trivial solutions for the unknown
coefficients.

When N = 1, the coefficients of the cubic Eq. (24) are

dy = p° +6¢3p° + (=8ac* +12¢° — %qu)p4 + (=32ac® + 8¢ — 2cq?)p?

+ (16d%¢c — 32ac® + 2aq* + 4b*c — 2c*)p* + (32d%¢ + 4aq® + 8b*c)p,
di = 3¢*p* + 12p° + (—16ac + 1265 — %qz)p2 + (=32ac — ¢*)p + 164> + 4b*,
dy = 3cp? + 6¢cp — 8a.

The analytical expression for /1(21) is given by Eq. (25). In Fig. 8, the analytical results for /1(21) are plotted along

with the numerical results of Agg). Three-dimensional surface plots of A(ZS) are shown in Fig. 9 for 6 = 0.5, 1.0,
and 1.5 to illustrate the influence of the real noise excitation on the secondary parametric resonance.
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Fig. 8. Second-order perturbation of moment Lyapunov exponent A(ZN), secondary resonance, 4 = 1.0, y = 1.0, « = 1.0. Lines, N =1,
analytical results; dots (o or @), N = 8, numerical results: (a) u=1.0; —, ¢ =2.0; ---, 6 =4.0; -—-—, 6 =6.0; -——-, 0 =8.0 and
--—--,0=100;and (b) 6 =1.0; —, u=1.0; ---, u=2.0; -— - —-, u=2.5; - -, and p = 3.0.

The second-order perturbation of the Lyapunov exponent 4, can be determined by using Eq. (28). When
N =8, /128) = —2N®/D® where the expressions of N® and D® are given in Appendix D. Expressions of /1(2N )

for larger values of N are also obtained but are not presented here. Three-dimensional surface plots of /1(214) are
shown in Fig. 10 for ¢ = 1.0 and 3.0. The impact of the real noise excitation on the secondary parametric
resonance can be clearly seen. Similar conclusions on the qualitative behaviour of the moment Lyapunov
exponent as in the case of primary parametric resonance can be drawn. It is noted that when 4 — +o00 or
u— 0, Egs. (26) and (30) are obtained, because in both cases the harmonic excitation has no effect and system
of Eq. (8) is equivalent to a two-dimensional system under only real noise excitation when the stability is
concerned.



Fig. 9. Second-order perturbation of moment Lyapunov exponent Agg)
(b) 6 =1.0 and (c) o = 1.5.
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, secondary resonance, u = 1.0, y = 1.0 and « = 1.0. (a) 6 = 0.5;
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a 81 . (14)
A
L
6

Fig. 10. Second-order perturbation of Lyapunov exponent /1(214), secondary resonance, y = 1.0 and « = 1.0. (a) ¢ = 1.0 and (b) ¢ = 3.0.

To study the accuracy of /lgN ), typical values of /lgN ) are plotted in Fig. 11 for N = 4, 8, and 12. It is seen that
/1(24) yields accurate results for smaller values of u up to 5, while /1(28) and /192) both yield accurate results for all
values of u shown. The validity of the perturbation results is checked by doing a Monte Carlo simulation, with
the numerical results shown inFig. 12. It can be seen that the analytical results A = 621(214) agree with Ay
obtained from simulation very well.

The Lyapunov exponent plots as seen in Figs. 5-7 are almost symmetric about 4 = 0 in the primary
parametric resonance case, whereas they are skewed towards —A in the secondary parametric resonance case
as shown in Figs. 10-12.
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Fig. 11. Second-order perturbation of Lyapunov exponent IS secondary resonance, y = 1.0, « =1.0 and 6 =1.0. eee, N =12;
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Fig. 12. Lyapunov exponent Ay, secondary resonance, y = 1.0, « = 1.0, ¢ = 1.0, ¢ = 0.1. Dots (o or ), simulation; lines, analytical
results, N=14; — u=1.0; ---, u=2.0; - — - —, u=3.0; -——-, un=4.0; and -- --, u=15.0.

4. Conclusions

In this paper, the dynamic stability of a two-dimensional system under the parametric excitation of combined
harmonic and real noise excitations is studied through the determination of the moment Lyapunov exponents and
the Lyapunov exponents. The real noise, modelled as an Ornstein—Uhlenbeck process, is a more realistic model of
noise in engineering applications than white noise. The eigenvalue problem governing the moment Lyapunov
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exponent is established by using the theory of stochastic dynamical systems. A regular perturbation method is
employed to obtain expansions of the moment Lyapunov exponents. The Lyapunov exponents are determined by
using the relationship between the moment Lyapunov exponents and the Lyapunov exponents. The accuracy of
the expansions are studied and the validity of the expansions are checked by using Monte Carlo simulation.

The cases of both the primary and secondary parametric resonance in the absence of the real noise
excitation are considered. The effect of the real noise excitation on the parametric resonance due to the
harmonic excitation is studied. When the influence of the real noise excitation is small, the harmonic excitation
is dominant and the parametric resonance is significant. On the other hand, when the impact of the real noise
excitation is large, the effect of the harmonic excitation is small and the prominence of the parametric
resonance due to the harmonic excitation diminishes.

In the special case when the amplitude of the harmonic excitation u = 0 or when the effect of the parametric
resonance diminishes with the mistune 4 — +oco, the moment Lyapunov exponent and the Lyapunov
exponent reduce to those of a two-dimensional system under only the real noise excitation. Unfortunately,
because of the current formulation is based on a stochastic dynamical system approach, it is not possible to set
y = 0 to reduce the result of the Lyapunov exponent to that of the Mathieu’s equation, i.e. a two-dimensional
system under harmonic excitation.
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Appendix A. Perturbation Analysis—Primary resonance
A.1. Zeroth-order perturbation

The zeroth-order perturbation equation of Eq. (21) is LyTg = A¢ T, or

02 62 To 6T0 aTO
290 A o
It is well known that one of the properties of the moment Lyapunov exponent is A, (0) = 0, which implies
A;0)=0,i=0, 1, .... Because Eq. (A.1) does not contain the parameter p explicitly, if A4o(0) =0 then
Ao(p) = 0 for all values of p.
Seeking a solution of Eq. (A.1) in the form To((, @, ) = Zo({)Po(¢)¥Po(¥) and substituting into Eq. (A.1)
leads to

= Ao T. (A.1)

27 Zy @
TE0_ 20 "0 g,
2 Zy Zy @
The @, equation results in ®o(p) = C,e*?. For ®y(¢) to be a periodic function in ¢, it is required that k = 0,
yielding ®¢(p) = Cy. From the Z; equation, Zy({) = C, + Cserf(is/a{/c), where erf(-) denotes the error
function. For Zy({) to be a bounded function when { — o0, it is required that C3 = 0 and hence Zy({) = C
Therefore, To({, @, ) = Yo(¥), where ¥o(¥) is a periodic function of period 2.
The adjoint equation of Eq. (A.1) is
0_262];’5 N aCaTg oT
2 o
Similarly, seeking a solution of the form T5((, ¢, ) = Z5(0)P5(e)P5(¥) and substituting into Eq. (A.2) leads
to

£ — 0. (A.2)

7, 0, CZ*+ @,
R (x—__z
27 "7 o=
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and Y;()) can be taken as an arbitrary periodic function of period 2zn. The @] equation yields
&;(p) = constant, k = 0. Since the coefficients of Eq. (19) are periodic functions in ¢ of period 7n, @j(¢)
may be taken as

(@) =1/n, 0<o<m, (A.3)
which is the probability density function of a random number uniformly distributed in (0, 7).
The Zj equation becomes
0'2 - %
720 +oalZy+0Z; =0, (A.4)

which is the Fokker—Planck equation for the stationary transition probability density of the Ornstein—
Uhlenbeck process {(¢) as defined in Eq. (9) [21]. Eq. (A.4) may be written as

d (dZO +%°‘czg> =0,

de\ ¢
or
zZy 2
42 + —aCZS = probability current. (A.5)
d¢ o
Since both the probability density Z;({) and the probability current vanish when { — Fo00, Eq. (A.5) can be
solved to yield
RV 2no; P 22)" :

where o; = ¢/+/20 and Zj({) has been normalized using fj;; Z3({)d{ = 1. Eq. (A.6) indicates that the real
noise process {(¢), defined as an Ornstein—Uhlenbeck process, is a normally distributed random variable with
mean value u; = 0 and standard deviation o;.

A.2. First-order perturbation

The first-order perturbation equation becomes, because Ay(p) = 0,
LoT) = 4, Ty — L T. (A7)
Because To(¢, @, ) = Po(¥), it is easy to show that
LiTo = —g,"(9.) - {,
where
9@, ¥) = 71205 9 ¥o() + pcos g sin pPo()].

The solvability condition of Eq. (A.7) is given by, from Fredholm Alternative (4,7 — LTy, T;) = 0, where
(f, g) denotes the inner product of functions f({, ,) and g(, @, ) defined as

2n ki +o0
Co=| [ ] scemconiiow

Hence,
A = (L1 T, Tp)
(T, T5)
_ 1
= Tty
in which (f({)) = fj’;o S(OZ5(0)dl is the expected value of f({), with { being a normally distributed random
variable with mean zero and standard deviation o, g(p) = fg g(@)P;(@)de, and (h(y)) = 02 "h(p) () dyr.

HO[2 cos? p(Po(W)) + pcos @ sin p]} = 0,
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The first-order perturbation equation becomes

LyT1 = ¢ (o.9) - L (A)
From Xie [§], it is shown that a solution of the equation LyT'({, @, ¥) = f(O)g(¢p, ) is given by

A
TGhsi) = [ o0 =BG (A9)
where E[f(z(r))] is the expected value of the random variable f(z(r)), in which z(r) is the normally distributed
random variable with the mean value and variance given by
2
a

— fa—ur—s) 2 —2a(r—s)
o =L, oy = o (1 - e H

The solution 7'({, @,y) is then obtained by replacing ¢ = ¢ — s and passing the limit s — —oo0.
Hence, the solution of Eq. (A.8) is

T o) = G, 9) - ¢,

where

G0 1) = = 5y 20 c0s 20 4 2usin 2 o7 + 9 Fo()

+ pa(osin 2¢p — 2cos2¢) V()]

A.3. Second-order perturbation

Since Ag(p) = A1(p) =0, the second-order perturbation equation is Lo7T, = A;Tg— LT — L, T).
From Fredholm Alternative, the solvability condition is (A2Tg— LiT1 — L2Ty, T5) = 0. It is easy to
show that

LTy = A®o(f) — psin(y — 2¢)[2cos® 9 P() + p cos @ sin o Po(W)],
LiTy = =S, 9) - L = S (o, 9) -
where

S\ (@, 1) = (2 cos’pPo(y) + p cos ¢ sin o Po(i)],

a6 oGy ,
Sgl)(¢,¢)=y[cosz¢<2 alpl + ag; + pcos psin GV |

The solvability condition becomes

n pm +oo
/ 0 / 0 /z (A2To — LTy — Ly To) Zo(O) () V(W) dldg dyy = 0,
¥=0 J =0 J(=—00

or

2n T
/W { / [A2¥o()) + (S (@, 1) — Ao ()
@

=0

+ psin(y — 2¢)(2cos’¥o() + p cos ¢ sin p¥o(1))] d(p} Yi(W)dy = 0. (A.10)
Since Eq. (A.10) is valid for an arbitrary function ¥§(y), the solvability condition leads to

/ " LT + (@)5V(0. 1) — AF)
[

=0
+ psin@ — 20)(2cos’¥o(Y) + p cos g sin o Po(Y)] dg = 0,



W.-C. Xie | Journal of Sound and Vibration 303 (2007) 109-134 131

or
aPo() + (b + 2gsiny) Po(¥) + [A2 + cp(p + 2) — pgeos Y] ¥o(y) = 0, (A.11)
where
. 7262302 + 8) _ Sad + 2034 + y%a? oo 262 u
2214 T w214 T 162 ta 1Ta

Hence, the second-order perturbation of the moment Lyapunov exponent A(p) is the eigenvalue of the
eigenvalue problem described in Eq. (A.11) with a second-order ordinary differential operator, in which ¥y()
is the associated eigenfunction.

Appendix B. i;s) in the primary parametric resonance region

N®
- p®”

N® =224+ ¢)¢"® + 10(5204° + 80a*c + ab* — 4b*c)g'* + 10(36 3124° 4 10 1604’ ¢
+237a°b* + 106a*b* ¢ — 3ab* + 26 b*¢)g'> + (10249 920a” + 4461 120a°¢
+ 231 524a°bh* + 59 888a*b*c + 1555a°b* — 5540a*b* ¢ + T1ab® — 628b°¢)q"°
+ 2(66 427 200a° 4 43 352 640a°c + 3631 3884h> + 1921 1324°h* ¢ + 42 1474°b*
+ 65 583a*b*c — 7984°b® + 81784°b%c — 37ab® + 367h%c)g® + (164> + b?)
x(25a* 4+ bH){(1998 864a” + 1985760a°¢ + 26 256a°b* — 21 400a*b*c + 5914°b*
— 1700a%b*c + 39ab® — 460b°¢)q® + (9a* + b*)(36a* + b*){2(7840a° + 12 964a*c
— 85a°h* — 493a*b*c — 5ab* + T9b*c)g* + (4d* + b*)(49a* + b*)[(64a’ + 224d%¢
+ ab® — 28b2¢)g* + 2c(d® + bP)(64d> + bH)}}, (B.2)

A = (B.1)

D® = ¢'% 420204 — b*)g"* + 10(5080a* + 53a*b* + 13b%)¢'> + 2(1 115 2804°
+ 14972a*h* — 13854°b* — 157b%)¢"° + (43 352 6404° + 1921 132a°h* + 65 5834*b*
+ 81784%b°® + 367h%)¢® + (164> + b*)(254° + b*){10(99 2884° — 1070a*h* — 854°b*
—23b%)q¢° + (9a* 4+ bH) (364> + b*){(12964a* — 493a>b* + T19b*)¢* + (4d® + b?)
X (494> + PH)[14(8a° — bH)g* + (& + b*)(64a” + bH)]}). (B.3)

Appendix C. Perturbation analysis—secondary resonance
C.1. Zeroth-order perturbation
The zeroth-order perturbation equation is LyTy = Ay T, which is the same as that in the case of the primary
parametric resonance (Eq. (A.1)). Following the same procedure as in Section A.l, A¢(p) =0 and
To(C, o, ) = Po(Y), where Py(y) is a periodic function of period 2x. The solution of the associated adjoint
equation given by Eq. (A.2) is T5(C, ¢, ¥) = Z5(O) D5 ()P 5(), where
1
Pip)=o-, 0<p<2nm, (C.1)
2n

which is the probability density function of a random number uniformly distributed in (0, 2x), Z;({) is given by
Eq. (A.6), and Y{(¥) is an arbitrary periodic function of period 27.
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C.2. First-order perturbation

Since Ayg(p) =0, the first-order perturbation equation becomes LoT| = ATy — L1Ty. The solvability
condition is, from Fredholm Alternative, (4,79 — LT, T;) = 0, where (f, g) denotes the inner product of
functions f({, @, ) and g((, @, ) defined as

2n 2n +oo
= d{de dy.
Go=[ [ [ scenconddoa

Because To(¢, ¢, ) = Po(¥), one has
LiTo = [={ + usin(e — )] - [cos’@ V() + pcos ¢ sin o Po(h)],

and the solvability condition leads to
1 2n

~ (To, T}) Jy=o
-0,

A [=7(0) + psin(p — )] - [cos?pWo() + p cos ¢ sin @] Wi (¥) dy,

where (f({)) = ff::f(C)Zg(g“) d{ is the expected value of f({), with { = N(0, o¢), and M = fozn 9(0)P;5(@)do.
The first-order perturbation equation becomes

LoTy = g (0. 9) + (0. 9) - {, (C2)

where

g5 (p. 1) = —psin(p — Y)[cos’ @ Po(1) + p cos ¢ sin o Po ()],

g1"(p.1h) = ylcos’ePo(¥) + p cos @ sin o Po(Y)].
The solution of Eq. (C.2) can be obtained by using Eq. (A.9) and is

T1( o) = G (. 9) + G (@9 - £,
where
Gy (1) = 5 {[4cos Y — 4psiny + cos(p + 1) — 6 cos(e — 1) — cos(3e — IFo(¥)

+ p[3sin(p + ) — sinGo — Y)1¥o(Y)},

— m [2(c% cos 2 + 200sin 2¢p + o + 4)Po ()

+ pa(osin 2¢p — 2 cos 2¢) Vo ()]

(o) =

C.3. Second-order perturbation
Since Ag(p) = A1(p) =0, the second-order perturbation equation is reduced to Lo7T, = A, To—
LT, — L,Ty. It is easy to show that
LTy = psin(p — )8y = 1Sy — usin(e —p)Si"1-¢ =987 - &,
LTy = A%y(),
where

oGV oGt
SV ) = cos?p | -+ —— | +peos@singG’, i=0,1.
dp oy
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The solvability condition of the second-order perturbation equation is, from Fredholm Alternative,
(/12 T() — L] T] — L2 T(), TS) = 07 which leads to

2n 2n
/w { / [AoPo()) — usin(o — WS +750(E) — AF()] dcp} Wiy dy = . (C.3)

=0 gp:O

Because Eq. (C.3) is valid for an arbitrary periodic function ¥(i), one must have

2n
Moo — psin(o =Sy’ + 781 () = APo@)ldo =0,

Pp=!

which yields, after integration,

aPo() + (b + gcos 20) Po(Y) + [A2 + cp(p + 2) + pgsin 261¥(¥) = 0, (C.4)
where
_ 126232 + 8) b _ a(o? + 4) (> + 124) + 39262 e g2 _ ,u_2
1622 +4)° 120(c2 + 4) T T Ie x4 1T R

Hence, the second-order perturbation of the moment Lyapunov exponent A, is given by the eigenvalue of
system described by Eq. (C.4) with a second-order ordinary differential operator.

Appendix D. )és) in the secondary parametric resonance region

8
/1(8) _ N®
2 D®”’

N® = (40a + ¢)¢"® + 80(2080a> + 80d>c + ab® — b*c)g'* + 160(1 161 9844’ + 81280a*c
+18964°h> + 2124 ch® — 6ab* + 13b*c)g'? + 128(655994 880a” + 713779204°¢
+ 3704 384a°b* + 239 552a*b* ¢ + 6220a°b* — 5540a°b ¢ + T1ab® — 157 b%c)g'"®
+256(68 021 452 8004° + 11098 275 840a%c 4+ 929 635 3284’ b* + 122952 4484°b*¢
+26974084°b* + 1049 328a*b*c — 127684°b® + 32 7124°b%¢ — 148ab® + 367b%¢)¢®
+2048(64d” + b*)(100a> + b*){(1279272964” + 31772 160a°c + 420 0964°b*
— 85600a*h’c + 2364a°b* — 1700a°b*c + 39ab® — 115b°¢)q® + 2(364* + b*)
x(144a* + b*){(501 760a° + 207 424a*c — 1360a°b*> — 19724°b* ¢ — 20ab*
+ 79b%)g* + 8(164> + b*)(1964° + b*)[(2564° + 2244d°c + ab® — Th*¢)¢?
+ 2¢(4d® + b*)(2564% + bH]}}, (D.2)

(D.1)

D® = ¢'° 4 80 (804> — b*)¢'* + 160(81 280a* + 2124°h* + 13b%)¢"?
+ 128(71 377 920a° + 239 552a*h* — 5540a°b* — 157b%)¢"°
+256(11 098 275840a" + 122952 4484°h + 1049 328a*b* + 32 7124%b° + 3676%)¢°
+ 2048(64a” + b*)(100a> 4 b*){5(6 354 4324° — 17 120a*h* — 340a°b* — 236%)¢°
+ 2(364% + b*)(144a” + b*){(207 4244* — 19724°b* + 79b™)g*
+ 8(16a* + b*)(196a> + bH[1(324> — b*)q* + 2(4d® + b*)(2564° + b7)]}}. (D.3)
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